Journal of Porous Materials

, Volume 25, Issue 2, pp 495–501 | Cite as

Microstructure, thermal and electrical properties of polyaniline/phenolic composite aerogel

Article
  • 494 Downloads

Abstract

Phenolic aerogel was first fabricated by sol–gel polymerization and freeze-drying method. Then, it was soaked into aniline solvent for 1 day. Ultimately, polyaniline/phenolic (PANI/RF) composite aerogel was obtained after the aniline molecules inside the phenolic aerogel were polymerized into polyaniline. The microstructure, thermal and electrical properties of the composites were investigated. The experimental results showed that polyaniline wires adhere to the surface of the micro holes skeleton which can be observed from the SEM images. Thus, polyaniline wires will form much smaller network inside the RF network, exhibiting an interpenetrating 3D network structure. In addition, compared with RF aerogel, PNAI/RF aerogel had maintained the thermal performance well, which showed mildly decline in heat-resistance and increase in heat conductivity, respectively. What’s more, it exhibited superior electrical performance (good specific capacitance) as compared with that of RF aerogel which is non-conducting, In general, PANI/RF aerogel with low heat conductivity (0.021 W/mK), high electrical conductivity (0.12 S/cm) and specific capacitance (280 F/g) exhibited more excellent comprehensive performance than single RF aerogel.

Keywords

Aerogel Conducting polymers Microstructure Thermal properties Electrical properties 

Notes

Acknowledgements

This work is supported by the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (PAPD) as well as National Natural Science Foundation of China (Funding No. 51672129).

References

  1. 1.
    Y. Wang, S.J. Wang, C. Bian, Y.H. Zhong, X.L. Jing, Polym. Eng. Sci. 111, 239 (2015)Google Scholar
  2. 2.
    L.P. Bian, J.Y. Xiao, J.C. Zeng, S.L. Xing, C.P. Yin, A.Q. Jia, Mater. Design 54, 230 (2014)CrossRefGoogle Scholar
  3. 3.
    U.A. Amran, S. Zakaria, C.H. Chia, S.N. Jaafar, R. Roslan, Ind. Crop. Prod. 72, 54 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Zhang, Y.G. Lu, L. Zhan, X.Y. Liang, G.P. Wu, L.C. Ling, Carbon 41, 1660 (2003)CrossRefGoogle Scholar
  5. 5.
    S.A. Song, Y.S. Chung, S.S. Kim, Compos. Sci. Technol. 103, 85 (2014)CrossRefGoogle Scholar
  6. 6.
    J.Y. Zhu, X. Yang, Z.B. Fu, C.Y. Wang, W.D. Wu, L. Zhang, J. Porous Mater. 23, 1217 (2016)CrossRefGoogle Scholar
  7. 7.
    T. A. El-Brolossy, S. S. Ibrahim, E. A. Alkhudhayr, Polym. Compos. 36, 1242 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Renew. Sust. Energ. Rev. 34, 273 (2014)CrossRefGoogle Scholar
  9. 9.
    J.Y. Zhu, X. Yang, Z.B. Fu, C.Y. Wang, W.D. Wu, L. Zhang, Chem. Eur. J. 22, 2515 (2016)CrossRefGoogle Scholar
  10. 10.
    R.J. Goldstein, E.R.G. Eckert, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, A. Bar-Cohen, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, Int. J. Heat. Mass Transf. 48, 819 (2005)CrossRefGoogle Scholar
  11. 11.
    E.M. Sparrow, S.S. Kang, W. Chuck, Int. J. Heat. Mass Transf. 30, 1237 (1987)CrossRefGoogle Scholar
  12. 12.
    S. P. Gumfekar, W. Wang, B. X. Zhao, Macromol. Mater. Eng. 229, 966 (2014)CrossRefGoogle Scholar
  13. 13.
    H.B. Zhao, L. Yuan, Z.B. Fu, C.Y. Wang, X. Yang, J.Y. Zhu, J. Qu, H.B. Chen, D.A. Schiraldi, ACS Appl. Mater. Interfaces 8, 9917 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. E. Miao, W. Fan, D. Chen, T. Liu, ACS Appl. Mater. Interfaces 5, 4423 (2013)CrossRefGoogle Scholar
  15. 15.
    M.A. Rahman, Y.C. Wong, G.S. Song, C. Wen, J. Porous Mater. 22, 1313 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.N. Meng, K. Wang, Y.J. Zhang, Z.X. Wei, Adv. Mater. 25, 6985 (2013)CrossRefGoogle Scholar
  17. 17.
    F.H. Meng, Y. Ding, Adv. Mater. 23, 4098 (2011)CrossRefGoogle Scholar
  18. 18.
    N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 18, 1345 (2006)CrossRefGoogle Scholar
  19. 19.
    R. A. Green, S. Baek, L. A. Polle-Warren, P. J. Martens, Sci. Technol. Adv. Mater. 11, 14107 (2010)CrossRefGoogle Scholar
  20. 20.
    T.Y. Dai, Y.J. Jia, Polymer 52, 2550 (2011)CrossRefGoogle Scholar
  21. 21.
    P.C. Rodrigues, G.P. Souza, J.D. Damottaneto, L. Akcelrud, Polymer 43, 5493 (2002)CrossRefGoogle Scholar
  22. 22.
    R. Yao, Z.J. Yao, J.T. Zhou, Mater. Lett. 176, 199 (2016)CrossRefGoogle Scholar
  23. 23.
    W.J. Jiang, W.J. Luo, R.L. Zong, W.Q. Yao, Z.P. Li, Y.F. Zhu, Small 12, 4370 (2016)CrossRefGoogle Scholar
  24. 24.
    W.W. Li, F.X. Gao, X.Q. Wang, N. Zhang, M.M. Ma, Angew. Chem. Int. Ed. 55, 9196 (2016)CrossRefGoogle Scholar
  25. 25.
    D.Y. Zhai, B.R. Liu, Y. Shi, L.J. Pan, W.B. Li, ACS Nano 7, 3540 (2013)CrossRefGoogle Scholar
  26. 26.
    H.F. An, Y. Wang, X.Y. Wang, N. Li, L.P. Zheng, J. Solid State Electrochem. 14, 651 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Yao, Z.J. Yao, J.T. Zhou, Polym. Compos. (2015). doi: 10.1002/pc.23811 Google Scholar
  28. 28.
    T. Mori, T.E. Smith, J. Urban Econ. 89, 1 (2015)CrossRefGoogle Scholar
  29. 29.
    S.J. Wang, Y. Wang, C. Bian, Y.H. Zhong, X.L. Jing, Appl. Surf. Sci. 331, 519 (2015)CrossRefGoogle Scholar
  30. 30.
    J.Z. Feng, J. Feng, Y.G. Jiang, C.R. Zhang, Mater. Lett. 65, 3454 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Materials and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjingChina

Personalised recommendations