Journal of Porous Materials

, Volume 25, Issue 2, pp 451–461 | Cite as

Synthesis of free template ZSM-5 catalyst from rice husk ash and co-modified with lanthanum and phosphorous for catalytic cracking of naphtha

Article
  • 194 Downloads

Abstract

ZSM-5 catalysts were synthesized from rice husk ash without using template and their catalytic activity has been investigated in catalytic cracking of light naphtha. Effect of hydrothermal temperature (170, 180 and 190 °C) on physicochemical properties of catalysts was investigated by BET, FE-SEM, FTIR, XRD and TGA-DTG analyses. The XRD analysis showed that hydrothermal temperature had great influence on crystalline structure of ZSM-5. Sample which was synthesized at 180 °C showed high crystllinity without any undesired alumina-silicate phases. The FE-SEM analysis showed that synthesis of ZSM-5 at 180 °C led to showed micro-scale hexagonal-shaped morphology. Furthermore, the textural properties of synthesized samples depend on the synthesis temperature drastically. Results of catalytic activity test showed that the synthesis temperature has great influence on the activity of ZSM-5 and the sample which synthesized with at 180 °C showed the highest catalytic activity. Furthermore, in order to improve the catalyst performance and the stability, both of Lanthanum and Phosphorus were used in catalytic cracking of naphtha. 2.5La–3P/ZSM-5 produced the highest light olefins yield. Catalyst modification of ZSM-5 by La and P, increased the ratio of propylene/ethylene from 1 to 2.

Keywords

Catalytic cracking Rice husk Free template Lanthanum Phosphorus Naphtha 

References

  1. 1.
    J. Lee, U.G. Hong, S. Hwang, M.H. Youn, I.K. Song, Fuel Process. Technol. 109, 189–195 (2013)CrossRefGoogle Scholar
  2. 2.
    A.A. Al-Shammari, S.A. Ali, N. Al-Yassir, A.M. Aitani, K.E. Ogunronbi, K.A. Al-Majnouni, S.S. Al-Khattaf, Fuel Process. Technol. 122, 12–22 (2014)CrossRefGoogle Scholar
  3. 3.
    R. Javaid, K. Urata, S. Furukawa, T. Komatsu, Appl. Catal. A 491, 100–105 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Kubo, H. Iida, S. Namba, A. Igarashi, Appl. Catal. A 489, 272–279 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Liu, W.C. Choi, N.Y. Kang, Y.J. Lee, H.S. Park, C.-H. Shin, Y.-K. Park, Catal. Today 226, 52–66 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, Catal. Commun. 69, 20–24 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Kubo, T. Takahashi, H. Iida, S. Namba, A. Igarashi, Appl. Catal. A 482, 370–376 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J.N. Kondo, T. Tatsumi, Appl. Catal. A 449, 188–197 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba, J.N. Kondo, T. Tatsumi, Microporous Mesoporous Mater. 145, 165–171 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Urata, S. Furukawa, T. Komatsu, Appl. Catal. A 475, 335–340 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Sedighi, K. Keyvanloo, J. Towfighi, Fuel 109, 432–438 (2013)CrossRefGoogle Scholar
  12. 12.
    E. Mohiuddin, Y.M. Isa, M.M. Mdleleni, N. Sincadu, D. Key, T. Tshabalala, Appl. Clay Sci. 119, 213–221 (2016)CrossRefGoogle Scholar
  13. 13.
    I.O. Ali, A.M. Hassan, S.M. Shaaban, K.S. Soliman, Sep. Purif. Technol 83, 38–44 (2011)CrossRefGoogle Scholar
  14. 14.
    W. Panpa, S. Jinawath, Appl. Catal. B 90, 389–394 (2009)CrossRefGoogle Scholar
  15. 15.
    F. Pan, X. Lu, Y. Wang, S. Chen, T. Wang, Y. Yan, Mater. Lett. 115, 5–8 (2014)CrossRefGoogle Scholar
  16. 16.
    Q. Yu, X. Meng, J. Liu, C. Li, Q. Cui, Microporous Mesoporous Mater. 181, 192–200 (2013)CrossRefGoogle Scholar
  17. 17.
    E. Epelde, A.G. Gayubo, M. Olazar, J. Bilbao, A.T. Aguayo, Chem. Eng. J. 251, 80–91 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Liu, W.C. Choi, C.W. Lee, N.Y. Kang, Y.J. Lee, C.-H. Shin, Y.K. Park, Catal. Today 164, 154–157 (2011)CrossRefGoogle Scholar
  19. 19.
    K. Ramesh, L.M. Hui, Y.-F. Han, A. Borgna, Catal. Commun. 10, 567–571 (2009)CrossRefGoogle Scholar
  20. 20.
    S.M.T. Sendesi, J. Towfighi, K. Keyvanloo, Catal. Commun. 27, 114–118 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Song, A. Takahashi, I. Nakamura, T. Fujitani, Appl. Catal. A 384, 201–205 (2010)CrossRefGoogle Scholar
  22. 22.
    L. Vafi, R. Karimzadeh, J. Nat. Gas Sci. Eng. 27, 751–756 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, Catal. Lett. 144, 44–49 (2014)CrossRefGoogle Scholar
  24. 24.
    W. Huang, F. Gong, M. Fan, Q. Zhai, C. Hong, Q. Li, Bioresour. Technol. 121, 248–255 (2012)CrossRefGoogle Scholar
  25. 25.
    I.O. Ali, M.S. Thabet, K.S. El-Nasser, A.M. Hassan, T.M. Salama, Microporous Mesoporous Mater. 160, 97–105 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Kordatos, A. Ntziouni, L. Iliadis, V. Kasselouri-Rigopoulou, J. Mater. Cycles Waste Manage. 15, 571–580 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Kordatos, S. Gavela, A. Ntziouni, K. Pistiolas, A. Kyritsi, V. Kasselouri-Rigopoulou, Microporous Mesoporous Mater. 115, 189–196 (2008)CrossRefGoogle Scholar
  28. 28.
    M. Ali, B. Brisdon, W. Thomas, Appl. Catal. A 252, 149–162 (2003)CrossRefGoogle Scholar
  29. 29.
    R. Khoshbin, R. Karimzadeh, Adv. Powder Technol. 28, 973–982 (2017)CrossRefGoogle Scholar
  30. 30.
    R. Kalbasi, M. Ghiaci, A. Massah, Appl. Catal. A 353, 1–8 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations