Journal of Porous Materials

, Volume 25, Issue 2, pp 341–349 | Cite as

Research of silica aerogels prepared by acidic silica sol under the condition of atmospheric pressure drying

  • Da Sun
  • Kui Li
  • Xueye Sui
  • Changling Zhou
  • Futian Liu
Article
  • 522 Downloads

Abstract

Acidic silica sol was used as precursor to prepare SiO2 aerogels using the atmospheric pressure drying technology. The influence of pH, water bath temperature and concentrations of silica sol on the structure parameters and morphology were systematically studied. SiO2 aerogel prepared with the sol concentration of 20% possessed uniform structure and the best structure parameters. Water bath temperature exhibited an obvious effect on morphology, specific surface area and porosity. Moreover, the optimal SiO2 aerogel showed a good heat resistance up to 700 °C. A lower thermal conductivity was 0.019 W/m · K at room temperature (25 °C) and 0.044 W/m · K at 600 °C.

Keywords

SiO2 aerogel Acidic silica sol Concentration of silica sol Heat resistance 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of Shandong province, China (ZR2015EL005 and ZR2016BQ26) and the NSFC (No. 21601063). Authors also appreciated Fazhe Sun for the analysis of scanning electron microscopy in the Analytical and Testing Center of Shandong University of Technology.

References

  1. 1.
    M.L.N. Perdigoto, R.C. Martins, N. Rocha, M.J. Quina, L. Gando-Ferreira, R. Patrício, L. Durães, J. Colloid Interface Sci. 380, 134–140 (2012)CrossRefGoogle Scholar
  2. 2.
    C.E. Carraher, Polym. News 30, 386–388 (2005)CrossRefGoogle Scholar
  3. 3.
    D.Y. Nadargi, S.S. Latthe, H. Hirashima, A.V. Rao, Microporous Mesoporous Mater. 117, 617–626 (2009)CrossRefGoogle Scholar
  4. 4.
    Z. Li, L.L. Gong, X.D. Cheng, S. He, C.C. Li, H.P. Zhang, Mater. Des. 99, 249–355 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.F. Lei, Z.J. Hu, B. Cao, X.H. Chen, H.H. Song, Mater. Chem. Phys. 187, 183–190 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Beamish, T. Herman, Phys. B 329, 340–341 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Bagheri, N. Mehrpouya, E. Khosravani, J. Dispers. Sci. Technol. 37, 1423–1435 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Sanchez, P. Bellevill, M. Popall, L. Nicolea, Chem. Soc. Rev. 40, 696–753 (2011)CrossRefGoogle Scholar
  9. 9.
    S.A. Mahadik, F. Pedraza, V.G. Parale, H. Park, J. Non-Cryst. Solids 453, 167–171 (2016)CrossRefGoogle Scholar
  10. 10.
    H.L. Yang, X.M. Kong, Y.R. Zhang, C.C. Wu, E.X. Cao, J. Non-Cryst Solids 357, 3447–3453 (2011)CrossRefGoogle Scholar
  11. 11.
    S.S. Kistler, Nature 127, 741–746 (1931)CrossRefGoogle Scholar
  12. 12.
    G.W. Liu, B. Zhou, X.Y. Ni, J. Shen, A. Du, G.J. Zu, J. Chin. Ceram. Soc. 40, 160–164 (2012)Google Scholar
  13. 13.
    D.D. Wang, X.F. Sun, Z.Q. Wang, Z.H. Wang, G. Wang, H.X. Li, J. Mater. Sci. Technol. 21, 77–82 (2013)Google Scholar
  14. 14.
    P.B. Wagh, R. Begag, G.M. Pajonk, Mater. Chem. Phys. 57, 214–218 (1999)CrossRefGoogle Scholar
  15. 15.
    J.H. Bi, D.M. Huang, S. He, L. Zhi, H. Yang, X.D. Cheng, J. Mater. Sci. Eng. 32, 178–182 (2014)Google Scholar
  16. 16.
    C. Chen, X.J. Cao, L.H. He, Sci. Technol. Eng. 13, 8815–8818 (2013)Google Scholar
  17. 17.
    D.M. Zheng, C. Chen, H.N. Qu, Bull. Chin. Ceram. Soc. 33, 2863–2867 (2014)Google Scholar
  18. 18.
    M.S. Tsai, Y.H. Po, C.H. Yang, J. Nanopart. Res. 8, 943–949 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Lu, J.Y. Sun, Q.Q. Wei, K. Hu, Q. Zhou, J. Chin. Ceram. Soc. 41, 153–157 (2013)Google Scholar
  20. 20.
    L.H. Gan, L.W. Chen, Y.X. Zhang, Acta Physicochim. Sin. 19, 504–508 (2003)Google Scholar
  21. 21.
    D.F. Zhao, Y.M. Chen, X.B. Hong, J. Xu, J. Chin. Ceram. Soc. 32, 548–552 (2004)Google Scholar
  22. 22.
    A.V. Rao, S.D. Bhagat, H. Hirashima, G.M. Pajonk, J. Colloid Interface Sci. 300, 279–285 (2006)CrossRefGoogle Scholar
  23. 23.
    H. Guo, B.N. Nguyen, L.S. Mccorkle, B. Shonkwilerb, M.A.B. Meador, J. Mater. Chem. 19, 9054–9062 (2009)CrossRefGoogle Scholar
  24. 24.
    D.J. Boday, P.Y. Keng, B. Muriithi, J. Pyun, D.A. Loy, J. Mater. Chem. 20, 6863–6865 (2010)CrossRefGoogle Scholar
  25. 25.
    B.H. Wang, Q. Li, Dry. Technol. Equip. 11, 18–26 (2013)Google Scholar
  26. 26.
    N. Leventis, Acc. Chem. Res. 40, 874–884 (2007)CrossRefGoogle Scholar
  27. 27.
    X. Li, H.L. Zhao, X.W. Li, J. Chem. Ind. Eng. 58, 501–506 (2007)Google Scholar
  28. 28.
    A.S. Dorcheh, M. H. Abbasi, J. Mater. Proc. Technol. 199, 10–26 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Iswar, W.J. Malfait, S. Balog, F. Winnefeld, M. Lattuada, M.M. Koebel, Microporous Mesoporous Mater. 241, 293–302 (2017)CrossRefGoogle Scholar
  30. 30.
    S. He, D.M. Huang, H.J. Bi, Z. Li, H. Yang, X.D. Cheng, J. Non-Cryst Solids 410, 58–64 (2015)CrossRefGoogle Scholar
  31. 31.
    S.A. Lermontov, N.A. Sipyagina, A.N. Malkova, A.E. Baranchikov, V.K. Ivanov, Microporous Mesoporous Mater. 237, 127–131 (2017)CrossRefGoogle Scholar
  32. 32.
    G. Gould, D. Ou, R. Begag, W. E. Rhine, Polym. Prepr. 49, 534–535 (2008)Google Scholar
  33. 33.
    Y. Duana, S.C. Jana, B. Lama, M.P. Espe, J. Non-Cryst Solids 437, 26–33 (2016)CrossRefGoogle Scholar
  34. 34.
    W.Q. Liu, G.D. Sun, Practical Research Methods of Solid Catalysts (China Petrochemical Press CO., Ltds, Beijing, 2001)Google Scholar
  35. 35.
    S.H. Feng, J. Jia, Adv. Ceram. 37, 34–40 (2016)Google Scholar
  36. 36.
    J.Y. Zhu, H. Chen, R.X. Liu, C.X. Yin, F.T. Liu, Adv. Ceram. 37, 47–53 (2016)Google Scholar
  37. 37.
    D.Y. Nadargi, S.S. Latthe, A.V. Rao, J. Sol-Gel Sci. Technol. 49, 53–59 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Da Sun
    • 1
  • Kui Li
    • 1
  • Xueye Sui
    • 2
  • Changling Zhou
    • 2
  • Futian Liu
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanChina
  2. 2.Shandong Research and Design Institute Ceramics Co., LtdZiboChina

Personalised recommendations