Journal of Porous Materials

, Volume 25, Issue 1, pp 273–281 | Cite as

Characterization and use of MoO3 modified alumosilicates in Prins cyclization of isoprenol and isovaleraldehyde

  • Eliška VyskočilováEmail author
  • Lada Sekerová
  • Iva Paterová
  • Jiří Krupka
  • Martin Veselý
  • Libor Červený


MoO3 modified alumosilicates were prepared by impregnation method and used in Prins cyclization of isoprenol and isovaleraldehyde forming 2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol (important compound for fragrant industry). Alumosilicates of Siral type were chosen as supports and compared with pure silica and alumina. Prepared catalysts were characterized by available methods: XRD, XRF, solid UV–Vis, TGA, TPD of pyridine, nitrogen adsorption and SEM. It was found that impregnation of Siral by MoO3 gave homogeneous distribution of Mo species on the support. On the other side using pure silica as a support the crystallic structure of MoO3 was detected in the resulting material. Impregnation of pure alumina by MoO3 resulted in the formation of aluminum molybdate. All prepared materials were used in above mentioned reaction. With increasing amount of silica in alumosilicate the increase of reaction rate and selectivity was observed up to 40% of silica in the material. Comparable results (selectivity to substituted tetrahydropyranol up to 50%) were obtained using Siral 40 and silica as supports for MoO3. These materials may be also used repeatedly without loss of activity and selectivity.


Molybdenum oxide Alumosilicates Prins cyclization Siral 



This work was realized within the Operational Programme Prague—Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability” (NPU I LO1613) MSMT-43760/2015. We also acknowledge grant project GACR 16-25747S. M. Lhotka is kindly acknowledged for BET measurement.


  1. 1.
    E. Vyskocilova, L. Rezkova, E. Vrbkova, I. Paterova, L. Cerveny, Res. Chem. Intermed. 42(2), 725–733 (2016)CrossRefGoogle Scholar
  2. 2.
    P.H. Williams, S.A. Ballard, US Pat., 2 422 648 (1947)Google Scholar
  3. 3.
    J.S. Yadav, B.V.S. Reddy, M.S. Reddy, N. Niranjan, J. Mol. Catal. A 210(1–2), 99–103 (2004)CrossRefGoogle Scholar
  4. 4.
    U. Akira, A. Yochiharu, T. Shigeyoshi, N. Kazuki, M. Koji, Eur. Pat. 149 3737 (2005)Google Scholar
  5. 5.
    G.P. More, M. Rane, S.V. Bhat, Green Chem. Lett. Rev. 5, 13–17 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Gralla, K. Beck, M. Klos, H. Griesbach, US Pat. 0306 779 (2011)Google Scholar
  7. 7.
    G. Li, Y. Gu, Y. Ding, Z. Yong, W. Hanpeng, G. Jianming, Y. Qiang, S.J. Liang, J. Mol. Catal. A 218(2), 147–152 (2004)CrossRefGoogle Scholar
  8. 8.
    J.S. Yadav, B.V. Subba Reddy, G.G.K.S. Narayana Kumar, S. Aravind, Synthesis 2008(3), 395–400 (2008)CrossRefGoogle Scholar
  9. 9.
    J.S. Yadav, B.V. Subba Reddy, D.N. Chaya, G.G.K.S. Narayana Kumar, P. Naresh, B. Jagadeesh, Tetrahedron Lett. 50, 1799–1802 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Tadpetch, S. Rychnovsky, Org. Lett. 10, 4839–4842 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Telalović, A. Ramanthan, J. Fei Ng, R. Maheswari, C. Kwakernaak, F. Soulimani, H.C. Brouwer, G.K. Chuah, B.M. Weckhuzsen, U. Hanefeld, Chem. Eur. J. 17, 2077–2088 (2011)CrossRefGoogle Scholar
  12. 12.
    E. Vyskočilová, M. Krátká, M. Veselý, E. Vrbková, L. Červený, Res. Chem. Intermed. 42, 6691 (2016)Google Scholar
  13. 13.
    M. Breugst, R. Grée, K.N. Houk, J. Org. Chem. 78, 9892–9897 (2013)CrossRefGoogle Scholar
  14. 14.
    F.K. Chio, J. Warne, D. Gough, M. Penny, S. Green, S.J. Coles, M.B. Hursthouse, P. Jones, Tetrahedron 67, 5107–5124 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Borkar, P. Weghe, B.V.S. Reddy, J.S. Yadav, R. Grée, Chem. Commun. 48, 9316–9318 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Yheng, X. Liu, S. Qin, M. Xie, L. Lin, Ch. Hu, X. Feng, J. Am. Chem. Soc. 134, 17564–17573 (2012)CrossRefGoogle Scholar
  17. 17.
    K.R.K.K. Reddy, I.M.L. Rosa, A.C. Doriguetto, E.L. Bastos, L.F. Silva Jr, Molecules 18, 11100–11130 (2013)CrossRefGoogle Scholar
  18. 18.
    E. Vyskočilová, M. Krátká, L. Červený, ICCT 2015, Mikulov, Czech Republic, ISBN: 978-80-86238-82-1, 27Google Scholar
  19. 19.
    A. Auroux, A. Gervasini, J. Phys. Chem. 94, 6371–6379 (1990)CrossRefGoogle Scholar
  20. 20.
    M.A. Banares, H. Hu, I.E. Wachs, J. Catal. 150, 407–420 (1994)CrossRefGoogle Scholar
  21. 21.
    W. Zhang, S.T. Oyama, J. Phys. Chem. 100, 10759–10767 (1996)CrossRefGoogle Scholar
  22. 22.
    H. Lu, E. Iglesia, J. Catal. 208, 1–5 (2002)CrossRefGoogle Scholar
  23. 23.
    M.A. Banares, N.D. Spencer, M.D. Jones, I.E. Wachs, J. Catal. 146, 204–210 (1994)CrossRefGoogle Scholar
  24. 24.
    K. Chen, A.T. Bell, E. Iglesia, J. Catal. 209, 35–42 (2002)CrossRefGoogle Scholar
  25. 25.
    Z. Song, N. Mimura, J.J. Bravo-Suarez, T. Akita, S. Tsubota, S.T. Oyama, Appl. Catal. A 316, 142–151 (2007)CrossRefGoogle Scholar
  26. 26.
    C.C. Williams, J.G. Ekerdt, J.M. Jehng, F.D. Hardcastle, A.M. Turek, I.E. Wachs, J. Phys. Chem. 95, 8781–8791 (1991)CrossRefGoogle Scholar
  27. 27.
    M. Carbucicchio, F. Trifiro, J. Catal. 62, 13–18 (1980)CrossRefGoogle Scholar
  28. 28.
    K. Bruckman, B. Grzybowska, M. Che, J.M. Tatibouet, Appl. Catal. A 96, 279–288 (1993)CrossRefGoogle Scholar
  29. 29.
    T. Ono, H. Miyata, Y. Kubokawa, J. Chem. Soc. Faraday Trans. 83(6), 1761–1770 (1987)CrossRefGoogle Scholar
  30. 30.
    X. Ma, J. Gong, S. Wang, N. Gao, D. Wang, X. Yang, F. He, Catal. Commun. 5, 101–106 (2004)CrossRefGoogle Scholar
  31. 31.
    A.P. Amrute, S. Sahoo, A. Bordoloi, Y.K. Hwang, J.S. Hwang, S.B. Halligudi, Catal. Commun. 10, 1404–1409 (2009)CrossRefGoogle Scholar
  32. 32.
    V.S. Karakatti, D. Mumbaraddi, G.V. Shanbhag, A.B. Halgeri, S.P. Maradur, RSC Adv. 5, 93452–93462 (2015)CrossRefGoogle Scholar
  33. 33.
    A.N. Desikan, W. Zhang, S.T. Oyama, J. Catal. 157, 740–748 (1995)CrossRefGoogle Scholar
  34. 34.
    G. Tsilomelekis, A. Christodoulakis, S. Boghosian, Catal. Today 127, 139–147 (2007)CrossRefGoogle Scholar
  35. 35.
    T. Ono, H. Kamisuki, H. Hisashi, H. Miyata, J. Catal. 116, 303–307 (1989)CrossRefGoogle Scholar
  36. 36.
    DOPED ALUMINAS, Sasol Performance Chemicals (2016), Accessed 17 June 2016
  37. 37.
    M. Stekrova, H. Minarikova, E. Vyskocilova, J. Kolena, L. Cerveny, J. Porous Mater. 21(5), 757–767 (2014)CrossRefGoogle Scholar
  38. 38.
    L. Sekerová, E. Vyskočilová, L. Červený, React. Kinet. Mech. Catal. (2017). doi: 10.1007/s11144-016-1131-5 Google Scholar
  39. 39.
    J. Chang, A. Wang, J. Liu, X. Li, Y. Hu, Catal. Today 149(1–2), 122–126 (2010)CrossRefGoogle Scholar
  40. 40.
    E. Vyskočilová, M. Malý, A. Aho, J. Krupka, L. Červený, React. Kinet. Mech. Catal. 118(1), 235–246 (2016)CrossRefGoogle Scholar
  41. 41.
    M. McMillan, J.S. Brinen, G.L. Haller, J. Catal. 97(1), 243–247 (1986)CrossRefGoogle Scholar
  42. 42.
    J.P. Thielemann, G. Weinberg, C. Hess, ChemCatChem 3, 1814–1821 (2011)CrossRefGoogle Scholar
  43. 43.
    J.P. Thielemann, T. Ressler, A. Walter, G. Tzolova-Mueller, C. Hess, Appl. Catal. A 399, 28–34 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Eliška Vyskočilová
    • 1
    Email author
  • Lada Sekerová
    • 1
  • Iva Paterová
    • 1
  • Jiří Krupka
    • 1
  • Martin Veselý
    • 1
  • Libor Červený
    • 1
  1. 1.Department of Organic TechnologyUniversity of Chemistry and Technology PraguePrague 6Czech Republic

Personalised recommendations