Journal of Porous Materials

, Volume 25, Issue 1, pp 207–214 | Cite as

Preparation, characterization and excellent catalytic activity of Cu/SBA-15 nanomaterials

  • Junhong WangEmail author
  • Xianzhao Shao
  • Guanghui Tian
  • Weiren BaoEmail author


Cu/SBA-15 nanomaterials were synthesized by means of a simple impregnation reduction method using excess NaBH4 as reducing agent. The morphology and structure of synthesized materials were characterized by powder X-ray diffraction, N2 adsorption–desorption isothermal and transmission electron microscope. The catalytic activity of Cu/SBA-15 toward the reducing reaction of p-nitrophenol was investigated using UV–Vis spectroscope as monitor and discussed further from the viewpoints of reactive kinetics and thermodynamics. Results show that the ordered structure of mesoporous materials was still remained as Cu nanoparticles incorporated into SBA-15, and that the specific surface areas and pore diameters of materials enlarged. Cu/SBA-15 as catalytic exhibited an excellent catalytic activity and over 99.0% of p-nitrophenol was reduced into p-aminophenol. The time to complete reaction shortened as increasing of reaction temperature as well as Cu nanoparticles loaded amount. The activity energy of reduction reaction was 64.09 kJ mol−1 and the rate constants increased as rise of the reaction temperatures from the pseudo-first-order reaction model. The thermodynamic analysis reveals that the activity parameters of reaction were as follows: enthalpy change 61.65 kJ mol−1, entropy change −87.68 J mol−1 K−1, and Gibbs free energy change increased slightly as increasing the reaction temperature.


Cu/SBA-15 Pollution control Catalytic activation Thermodynamic properties 



Authors particularly thank the financial support of the National Natural Science Foundation of China (Project NO: 51372161, 21503125).


  1. 1.
    C.J. Ogugbue, T. Sawidis, Biotechnol. Res. Int. 1 (2011)Google Scholar
  2. 2.
    F.M.D. Chequer, G.A.R. de Oliveira, E.R.A. Ferraz, J.C. Cardoso, M.V.B. Zanoni, D.P. de Oliveira, Textile dyes: dyeing process and environmental impact, M. Günay, Eco-friendly textile dyeing and finishing, INTECH Publishers, Rijeka, pp. 151–176 (2013)Google Scholar
  3. 3.
    J.R. Chiou, B.H. Lai, K.C. Hsu, D.H. Chen, J. Hazard. Mater. 248, 394 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Shahidi, R. Roy, A. Azzouz, Appl. Catal. B 174–175, 277 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Shen, T. Xue, Y. Wang, G. Cao, Y. Lu, G. Fang, Mater. Bes. Bull. 84, 15 (2016)CrossRefGoogle Scholar
  6. 6.
    K. Shimizu, K. Sawabe, A. Satsuma, Catal. Sci. Technol. 1, 331 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Chi, L. Zhao, Q. Yuan, Y. Li, J. Zhang, J. Tu, N. Li, X. Li, Chem. Eng. J. 195–196, 254 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Park, H. Kim, J. Park, Int. J. Environ. Sci. Devel. 3, 81 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Saad, S. Thiboutot, G. Ampleman, D. Wang, J. Hawari, Chemosphere 81, 853 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Paganelli, O. Piccolo, F. Baldi, R. Tassini, M. Gallo, G. La Sorella, Appl. Catal. A 451, 144 (2013)CrossRefGoogle Scholar
  11. 11.
    Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Appl. Catal. B 158–159, 129 (2014)CrossRefGoogle Scholar
  12. 12.
    P.J.C. Hausoul, S.D. Tefera, J. Blekxtoon, P.C.A. Bruijnincx, R.J.M.K. Gebbink, B.M. Weckhuysen, Catal. Sci. Technol. 3, 1215 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Sciré, L.F. Liotta, Appl. Catal. B 125, 222 (2012)CrossRefGoogle Scholar
  14. 14.
    J.W. Zheng, H.Q. Lin, Y.N. Wang, X.L. Zheng, X.P. Duan, Y.Z. Yuan, J. Catal. 297, 110 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Chen, Z. Qu, Y. Sun, K. Gao, Y. Wang, Appl. Catal. B 142–143, 838 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Gao, Z. Zhang, K. Liu, B. Dong, Appl. Catal. B 188, 245 (2016)CrossRefGoogle Scholar
  17. 17.
    Z. Dong, X. Le, C. Dong, W. Zhang, X. Li, J. Ma, Appl. Catal. B 162, 372 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Qin, W. Lu, Y. Luo, G. Chang, A.M. Asiri, A.O. Al-Youbi, X. Sun, J. Nanosci. Nanotechnol. 12, 2983 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Hu, F. Yang, W. Lu, Y. Hao, H. Yuan, Appl. Catal. B 134–135, 7 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Wang, J. Shen, Y. Li, Z. Wei, G. Cao, Z. Gai, K. Hong, P. Banerjee, S. Zhou, ACS Appl. Mater. Inter. 5, 9446 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Arora, P. Kapoor, M.L. Singla, React. Kinet. Mech. Catal. 99, 157 (2010)Google Scholar
  22. 22.
    A. Chinnappan, A.H. Tamboli, W.J. Chung, H. Kim, Chem. Eng. J. 285, 554 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Saha, A. Pal, S. Kundu, S. Basu, T. Pal, Langmuir 26, 2885 (2010)CrossRefGoogle Scholar
  24. 24.
    S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S.K. Ghosh, T. Pal, J. Phys. Chem. C 111, 4596 (2007)CrossRefGoogle Scholar
  25. 25.
    J.F. Corbett, Dyes Pigm. 41, 127 (1999)CrossRefGoogle Scholar
  26. 26.
    B.K. Ghosh, S. Hazra, B. Naik, N.N. Ghosh, Powder Technol. 269, 371 (2015)CrossRefGoogle Scholar
  27. 27.
    C.V. Rode, M.J. Vaidya, R.V. Chaudhari, Org. Process Res. Dev. 3, 465 (1999)CrossRefGoogle Scholar
  28. 28.
    J. Wang, H. Ge, W. Bao, Mater. Lett. 145, 312 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Wang, G. Tian, Z. Li, X. Ji, W. Bao, Mater. Lett. 162, 110 (2016)CrossRefGoogle Scholar
  30. 30.
    R.L. Oliveira, M. Shakeri, J.D. Meeldijk, K.P. De Jong, P.E. De Jongh, Micro. Meso. Mater. 201, 234 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Lin, L. Shi, T. Yu, X. Li, X. Yi, A. Zheng, Micro. Meso. Mater. 207, 111 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Zhu, X. Xie, S.A.C. Carabineiro, P.B. Tavares, J.L. Figueiredo, R. SchomÓ“cker, A. Thomas, Energy Environ. Sci. 4, 2020 (2011)CrossRefGoogle Scholar
  33. 33.
    B. Naik, S. Hazra, V.S. Prasad, N.N. Ghosh, Catal. Commun. 12, 1104 (2011)CrossRefGoogle Scholar
  34. 34.
    B. Naik, S. Hazra, P. Muktesh, V.S. Prasad, N.N. Ghosh, Sci. Adv. Mater. 3, 1025 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Angew. Chem. Int. Ed. 45, 813 (2006)CrossRefGoogle Scholar
  36. 36.
    Y. Mei, Y. Lu, F. Polzer, M. Ballauff, Chem. Mater. 19, 1062 (2007)CrossRefGoogle Scholar
  37. 37.
    A. Corma, P. Concepción, P. Serna, Angew. Chem. 119, 7404 (2007)CrossRefGoogle Scholar
  38. 38.
    S. Gu, Y. Lu, J. Kaiser, M. Albrecht, M. Ballauff, Phys. Chem. Chem. Phys. 17, 28137 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Chen, M. Murugananthan, Y. Zhang, Chem. Eng. J. 283, 1357 (2016)CrossRefGoogle Scholar
  40. 40.
    P. Guo, L. Tang, J. Tang, G. Zeng, B. Huang, H. Dong, Y. Zhang, Y. Zhou, Y. Deng, L. Ma, S. Tan, J. Colloid Inter. Sci. 469, 78 (2016)CrossRefGoogle Scholar
  41. 41.
    P.H.K. Charan, G.R. Rao, Micro. Meso. Mater. 200, 101 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment ScienceShaanxi University of TechnologyHanzhongPeople’s Republic of China
  2. 2.State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Ministry of Science and Technology and Shanxi ProvinceTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations