Journal of Porous Materials

, Volume 24, Issue 4, pp 1061–1068 | Cite as

Synthesis of iron substituted zeolite with Na-P1 framework

  • Asami KumonEmail author
  • Zaenal Abidin
  • Naoto Matsue


Zeolites with substitution by transition metals are expected to have unique catalytic properties in addition to common cation exchange abilities, but studies on the synthesis of iron-substituted zeolites with a greater cation exchange capacity (CEC) are very few. We hydrothermally synthesized iron-substituted Na-P1 type zeolites having CEC values of >300 cmolc kg−1 with iron content of up to 90 cmolc kg−1 with changing the addition of iron. Most of the iron in the products was concluded to be incorporated into the structure of Na-P1 by substituting aluminum, because measured CEC value and the content of sodium (exchangeable cation) nearly coincided with the sum of aluminum and iron contents in each product. In addition, UV–Visible diffuse reflectance spectra of the products revealed characteristic bands of isolated tetrahedral iron species and Fourier Transform Infrared spectroscopy (FT-IR) results indicated the existence of Si-O-Fe bonds in the products. These results confirmed the substitution of iron in the framework of Na-P1 by a hydrothermal synthesis in a short time.


Zeolite Na-P1 Iron Substitution Synthesis 



We thank Associate Professor Dr. Satoshi Mitsunobu for providing of the iron oxides and Mr. Takeshi Kiyoi at the Division of Analytical Bio-medicine the Advanced Research Support Center, Ehime University for his technical assistance of SEM observation. Additionally this study was supported by Ehime Institute of Industrial Technology for using UV–Visible spectroscopy.


  1. 1.
    M.E. Davis, Microporous Mesoporous. Mater. 21, 173 (1998)CrossRefGoogle Scholar
  2. 2.
    J. Weitkamp, Solid State Ionics 131, 175 (2000)CrossRefGoogle Scholar
  3. 3.
    S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33(11), 2469 (1999)CrossRefGoogle Scholar
  4. 4.
    E. Erdem, N. Karapinar, R. Donat, J. Colloid Interf. Sci. 280, 309 (2004)CrossRefGoogle Scholar
  5. 5.
    L.G.A. van de Water, J.C. van der Waal, J.C. Jansen, M. Cadoni, L. Marchese, T. Maschmeyer, J. Phys. Chem. B 107, 10423 (2003)CrossRefGoogle Scholar
  6. 6.
    R. Fricke, H. Kosslick, G. Lischke, M. Richter, Chem. Rev. 100, 2303 (2000)CrossRefGoogle Scholar
  7. 7.
    P. Ratnasamy, R. Kumar, Catal. Today 9(4), 329 (1991)CrossRefGoogle Scholar
  8. 8.
    M. Tamura, W. Chaikittisilp, T. Yokoi, T. Okubo, Microporous Mesoporous. Mater. 112, 202 (2008)CrossRefGoogle Scholar
  9. 9.
    G. Centi, S. Perathoner, F. Trifiró, A. Aboukais, C.F. Aïssi, M. Guelton, J. Phys. Chem-US 96, 2617 (1992)CrossRefGoogle Scholar
  10. 10.
    K. Na, C. Jo, J. Kim, W.S. Ahn, R. Ryoo, ACS Catal. 1, 901 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Chalupka, C. Thomas, Y. Millot, F. Averseng, S. Dzwigaj, J. Catal. 305, 46 (2013)CrossRefGoogle Scholar
  12. 12.
    J.H. Yun, R.F. Lobo, J. Catal. 312, 263 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Ribera, I.W.C.E. Arends, S. de Vries, J. Pérez-Ramírez, R.A. Sheldon, J. Catal. 195, 287 (2000)CrossRefGoogle Scholar
  14. 14.
    E.J.M. Hensen, Q. Zhu, R.A.J. Janssen, P.C.M.M. Magusin, P.J. Kooyman, R.A. van Santen, J. Catal. 233, 123 (2005)CrossRefGoogle Scholar
  15. 15.
    R. Szostak, T.L. Thomas, J. Chem. Soc., Chem. Commun. 2, 113 (1986)CrossRefGoogle Scholar
  16. 16.
    K. Katsuki, S. Yoneoka, N. Mori, M. Hasegawa, Y. Yamamoto, Y. Yoshino, J. Porous Mater. 15, 35 (2008)CrossRefGoogle Scholar
  17. 17.
    C.V.A. Duke, K. Latham, C.D. Williams, Zeolites 15, 213 (1995)CrossRefGoogle Scholar
  18. 18.
    P. Ratnasamy, A.N. Kotasthane, V.P. Shiralkar, A. Thangaraj, S. Ganapathy, in ACS Symposium Series 398, ed. by M.L. Occelli, H.E. Robson (American Chemical Society, Washington, D.C., 1989), p. 405Google Scholar
  19. 19.
    R. Kumar, A. Raj, S.B. Kumar, P. Ratnasamy, Stud. Surf. Sci. Catal. 84, 109 (1994)CrossRefGoogle Scholar
  20. 20.
    S. Hansen, Acta Crystallogr. C 46, 1361 (1990)CrossRefGoogle Scholar
  21. 21.
    U. Håkansson, L. Fälth, Acta Crystallogr. C 46, 1363 (1990)CrossRefGoogle Scholar
  22. 22.
    B.R. Albert, A.K. Cheetham, J.A. Stuart, C.J. Adams, Microporous Mesoporous. Mater. 21, 133 (1998)CrossRefGoogle Scholar
  23. 23.
    P. Sharma, J.-S. Song, M.H. Han, C.H. Cho, Sci. Rep. (2016). doi: 10.1038/srep22734 Google Scholar
  24. 24.
    M. Maldonado, M.D. Oleksiak, S. Chinta, J.D. Rimer, J. Am. Chem. Soc. 135, 2641 (2013)CrossRefGoogle Scholar
  25. 25.
    M.L. Jackson, Soil Chemical Analysis Advanced Course (University of Wisconsin, Madison, 1956), pp. 47–58Google Scholar
  26. 26.
    K. Katsuki, M. Okamoto, E. Ichikawa, A. Iwashina, S. Koike, Y. Yamamoto, T. Takeuchi, Y. Yoshino, Nippon Kagaku Kaishi 9, 689 (1995) (Japanese)CrossRefGoogle Scholar
  27. 27.
    Ch. Baerlocher, W.M. Meier, Z. Kristallogr. Cryst. Mater. 135, 339 (1972)Google Scholar
  28. 28.
    Y.S. Ko, W.S. Ahn, Microporous Mater., 9, 131 (1997)CrossRefGoogle Scholar
  29. 29.
    S. Shevade, R.K. Ahedi, A.N. Kotasthane, Catal. Lett. 49, 69 (1997)CrossRefGoogle Scholar
  30. 30.
    P. Wu, T. Komatsu, T. Yashima, Microporous Mesoporous. Mater. 20, 139 (1998)CrossRefGoogle Scholar
  31. 31.
    D. Goldfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan, H. Thomann, J. Am. Chem. Soc. 116, 6344 (1994)CrossRefGoogle Scholar
  32. 32.
    S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158, 486 (1996)CrossRefGoogle Scholar
  33. 33.
    J. Pérez-Ramírez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, J. Catal. 232, 318 (2005)CrossRefGoogle Scholar
  34. 34.
    U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory (Wiley-VCH, Weinheim, 2000), pp. 67–134CrossRefGoogle Scholar
  35. 35.
    E.M. Flanigen, H. Khatami, H.A. Szymanski, in Advance in Chemistry Series 101, ed. by E.M. Flanigen, L.B. Sand (American Chemical Society, Washington, D.C., 1971), p. 201Google Scholar
  36. 36.
    R. Szostak, V. Nair, T.L. Thomas, J. Chem. Soc., Faraday Trans. 1 83, 487 (1987)CrossRefGoogle Scholar
  37. 37.
    P. Castaldi, L. Santona, C. Cozza, V. Giuliano, C. Abbruzzese, V. Nastro, P. Melis, J. Mol. Struct. 734, 99 (2005)CrossRefGoogle Scholar
  38. 38.
    M. Salavati-Niasari, J. Incl. Phenom. Macrocycl. 65, 317 (2009) doi: 10.1007/s10847-009-9585-y CrossRefGoogle Scholar
  39. 39.
    A. Nezamzadeh-Ejhieh, S. Hushmandrad Appl. Catal. A 388, 149 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Environmental Sciences, Faculty of AgricultureEhime UniversityMatsuyamaJapan
  2. 2.Department of Chemistry, Faculty of Mathematics and Natural SciencesBogor Agricultural UniversityBogorIndonesia

Personalised recommendations