Skip to main content
Log in

Changes in the surface hydrophobicity degree of a MCM-41 used as iron support: a pathway to improve the activity and the olefins production in the Fischer–Tropsch synthesis

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The effect of surface hydrophobicity degree of MCM-41 support on activity and selectivity in Fischer–Tropsch synthesis has been studied. The Fe/MCM-41 catalyst was prepared by impregnation of the mesoporous support with iron. A portion of this product was silylated with hexamethyldisilazane. The samples were characterized by atomic absorption spectroscopy, X ray diffraction at low angles, N2 adsorption at 77 K, Fourier transform infrared spectroscopy and Mössbauer spectroscopy at 25 and 298 K in controlled atmosphere. Catalytic tests were performed simulating industrial operating conditions and showed that the silylated system presents higher activity, lower selectivity toward methane and higher olefin/paraffin ratio. The higher methane production and the lower amount of olefins observed for the non-silylated catalyst indicate that this system has a larger amount of hydrogen on its surface than the silylated one. A detailed discussion about the relationship among surface chemistry, stability, selectivity and the changes in iron species of the catalysts is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Luo, B.H. Davis, Appl. Catal. A. Gen. 246, 171–181 (2003). doi:10.1016/S0926-860X(03)00024-3

    Article  CAS  Google Scholar 

  2. M. Luo, H. Hamdeh, B.H. Davis, Catal. Today. 140, 127–134 (2009). doi:10.1016/j.cattod.2008.10.004

    Article  CAS  Google Scholar 

  3. R.J. O’Brien, L. Xu, R.L. Spicer, S. Bao, D.R. Milburn, B.H. Davis, Catal. Today. 36, 325–334 (1997). doi:10.1016/S0920-5861(96)00246-5

    Article  Google Scholar 

  4. M. Boudart, A. Delbouille, J.A. Dumesic, S. Khammouma, H. Topsøe, J. Catal. 37, 486–502 (1975). doi:10.1016/0021-9517(75)90184-0

    Article  CAS  Google Scholar 

  5. M.A. Mc Donald, D.A. Storm, M. Boudart, J. Catal. 102, 386–400 (1986). doi:10.1016/0021-9517(86)90175-2

    Article  CAS  Google Scholar 

  6. E.I. Mabaso, E. van Steen, M. Caléis, DGMK/SCI-Conference “Synthesis gas chemistry”, October, (Dresden, Germany, 2006), pp. 4–6

  7. G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. van Dillen, K.P. de Jong, J. Am. Chem. Soc. 128(12), 3956–3964 (2006). doi:10.1021/ja058282w

    Article  CAS  Google Scholar 

  8. J.-Y. Park, Y.-J. Lee, P.K. Khanna, K.-W. Jun, J.W. Bae, Y.H. Kim, J. Mol. Catal. A. Chem. 323, 84–90 (2010). doi:10.1016/j.molcata.2010.03.025

    Article  CAS  Google Scholar 

  9. R.A. van Santen, M.M. Ghouri, S. Shetty, E.M.H. Hensen, Catal. Sci. Technol. 1, 891–911 (2011). doi:10.1039/C1CY00118C

    Article  Google Scholar 

  10. N. Fischer, E. van Steen, M. Claeys, J. Catal. 299, 67–80 (2013). doi:10.1016/j.jcat.2012.11.013

    Article  CAS  Google Scholar 

  11. A.K. Dalai, T.K. Das, K.V. Chaudhari, G. Jacobs, B.H. Davis, Appl. Catal. A. 289, 135–142 (2005). doi:10.1016/j.apcata.2005.04.045

    Article  CAS  Google Scholar 

  12. V.R.R. Pendyala, G. Jacobs, J.C. Mohandas, M. Luo, W. Ma, M.K. Gnanamani, B.H. Davis, Appl. Catal. A. 389, 131–139 (2010). doi:10.1016/j.apcata.2010.09.018

    Article  Google Scholar 

  13. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, J. Am. Cem. Soc. 114, 10834–10843 (1992). doi:10.1021/ja00053a020

    Article  CAS  Google Scholar 

  14. R. Ryoo, J.M. Kim, J. Chem. Soc. Chem. Commun. 711–712 (1995). doi:10.1039/C39950000711

  15. K. Lagarec, D.G. Rancourt, “Mössbauer spectral analysis software” Dep. of Phys, Version 1.0. (University of Otawa, Ottawa, 1998)

    Google Scholar 

  16. I. Pérez De Berti, J. Bengoa, N. Fellenz, R. Mercader, S. Marchetti, Rev. Sci. Instrum. 86, 023903-1-023903-5 (2015). doi:10.1063/1.4913382

    Article  Google Scholar 

  17. N.A. Fellenz, PhD Thesis, http://hdl.handle.net/10915/2755

  18. N.A. Fellenz, J.F. Bengoa, S.G. Marchetti, A. Gervasini, Appl. Catal. A. Gen. 435–436, 187–196 (2012). doi:10.1016/j.apcata.2012.06.003

    Article  Google Scholar 

  19. R.R. Sever, R. Alcala, J.A. Dumesic, T.W. Root, Microporous Mesoporous Mater. 66, 53–67 (2003). doi:10.1016/j.micromeso.2003.08.019

    Article  CAS  Google Scholar 

  20. X.S. Zhao, G.Q. Lu, J. Phys. Chem. B. 102, 1556–1561 (2008). doi:10.1021/jp972788m

    Article  Google Scholar 

  21. R. Mariscal, M. López-Granados, J.L.G. Fierro, J.L. Sotelo, C. Martos, R. Van Grieken, Langmuir. 16, 9460–9467 (2000). doi:10.1021/la000876j

    Article  CAS  Google Scholar 

  22. D. Brunel, A. Cauvel, F. Fajula, F. DiRenzo, in Zeolites: a refined tool for designing catalytic sites, ed. by B. Delmon, J.T. Yates. Studies in surface science and catalysis, vol. 97 (Elsevier, Amsterdam, 1995), p. 173–180. doi:10.1016/S0167-2991(06)81887-2

    Google Scholar 

  23. M. Ojeda, F.J. Pérez-Alonso, P. Terreros, S. Rojas, T. Herranz, M. López Granados, J.L. García Fierro, Langmuir. 22, 3131–3137 (2006). doi:10.1021/la052980c

    Article  CAS  Google Scholar 

  24. J.M. Rosenholm, M. Lindén, Chem. Mater. 19, 5023–5034 (2007). doi:10.1021/cm071289n

    Article  CAS  Google Scholar 

  25. E. Murad, J.H. Johnston, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2, ed. G.J. Long, (Plenum Publishing Corporation, New York 1987)

    Google Scholar 

  26. W.F. Brown Jr., Phys. Rev. 130, 1677 (1963). doi:10.1103/PhysRev.130.1677

    Article  Google Scholar 

  27. J. Joo, T. Hyeon, J. Hyeon-Lee, Chem. Commun. 1487–1488 (2000). doi:10.1039/B001886O.

  28. J. Ryczkowski, J. Goworek, W. Gac, S. Pasieczna, T. Borowiecki, Thermochimica Acta 434, 2–8 (2005). doi:10.1016/j.tca.2004.12.020

    Article  CAS  Google Scholar 

  29. A. Calvo, P.C. Angelomé, V.M. Sánchez, D.A. Scherlis, F.J. Williams, G.J.A.A. Soler-Illia, Chem. Mater. 20, 4661–4668 (2008). doi:10.1021/cm800597k

    Article  CAS  Google Scholar 

  30. F.J. Berry, S. Skinner, M.F. Thomas, J. Phys. Condens. Matter. 10, 215–220 (1998). doi:10.1088/0953-8984/10/1/024

    Article  CAS  Google Scholar 

  31. S.-C. Lin, J. Phillips, J. Appl. Phys. 58(5), 1943–1949 (1985). doi:10.1063/1.336001

    Article  CAS  Google Scholar 

  32. B.S. Clausen, H. Topsøe, S. Mørup, Appl. Catal. 48, 327–340 (1989). doi:10.1016/S0166-9834(00)82802-X

    Article  CAS  Google Scholar 

  33. S. Li, G.D. Meitzner, E. Iglesia, J. Phys. Chem. B. 105, 5743–5750 (2001). doi:10.1021/jp010288u

    Article  CAS  Google Scholar 

  34. S. Li, W. Ding, G.D. Meitzner, E. Iglesia, J. Phys. Chem. B. 106, 85–91 (2002). doi:10.1021/jp0118827

    Article  CAS  Google Scholar 

  35. N.B. Jackson, A.K. Datye, L. Mansker, R.J. O’Brien, B.H. Davis, Stud. Surf. Sci. Catal. 111, 501 (1997)

    Article  CAS  Google Scholar 

  36. M.D. Shroff, D.S. Kalakkad, K.E. Coulter, S.D. Köhler, M.S. Harrington, N.B. Jackson, A.G. Sault, A.K. Datye, J. Catal. 156, 185–207 (1995). doi:10.1006/jcat.1995.1247

    Article  CAS  Google Scholar 

  37. J. Xu, C.H. Bartholomew, J. Phys. Chem. B. 109, 2392–2403 (2005). doi:10.1021/jp048808j

    Article  CAS  Google Scholar 

  38. L.A. Cano, M.V. Cagnoli, J.F. Bengoa, A.M. Alvarez, S.G. Marchetti, J. Catal. 278, 310–320 (2011). doi:10.1016/j.jcat.2010.12.017

    Article  CAS  Google Scholar 

  39. L. Shi, J. Chen, K. Fang, Y. Sun, Fuel 87, 521–526 (2008). doi:10.1016/j.fuel.2007.03.018

    Article  CAS  Google Scholar 

  40. M. Röper, Fischer–tropsch synthesis, catalysis in C1 chemistry, ed. W. Keim, 4, 41 (1983)

  41. Y. Liu, B-T. Teng, X-H. Guo, Y. Lia, J. Chang, L. Tian, X. Hao, Y. Wang, H-W. Xiang, Y-Y. Xu, Y-W. Li, J. Molec. Catal. A. Chem 272, 182–190 (2007). doi:10.1016/j.molcata.2007.03.046

    Article  CAS  Google Scholar 

  42. M. Pijolat, V. Perrichon, P. Bussiére, J. Catal. 107, 82–91 (1987). doi:10.1016/0021-9517(87)90274-0

    Article  CAS  Google Scholar 

  43. R.E. Vandenberghe, E. De Grave, C. Landuydt, L.H. Bowen, Hyperfine Inter. 53, 175–196 (1990). doi:10.1007/BF02101046

    Article  CAS  Google Scholar 

  44. S.-J. Liaw, B.H. Davis, Topics Catal. 10, 133–139 (2000). doi:10.1023/A:1019176403861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this research provided by Universidad Nacional de Río Negro (PI 40 C-392), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 00547), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA) and Universidad Nacional de La Plata. We also wish to thank to Ms Valle Graciela for FTIR measurements and Juan Julio and Martín Ramón for its assistance in electronic devices. The authors are grateful to María Cecilia Moreno, CICPBA translator, for checking the English version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Bengoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fellenz, N.A., Bengoa, J.F., Cagnoli, M.V. et al. Changes in the surface hydrophobicity degree of a MCM-41 used as iron support: a pathway to improve the activity and the olefins production in the Fischer–Tropsch synthesis. J Porous Mater 24, 1025–1036 (2017). https://doi.org/10.1007/s10934-016-0342-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0342-5

Keywords

Navigation