Journal of Porous Materials

, Volume 23, Issue 6, pp 1609–1618 | Cite as

MFI-type zeolites from natural materials: a comparative study of MFI-type zeolites generated from different diatomite species (part I)

  • Hallah Ahmad Alyosef
  • Hans Roggendorf
  • Denise Schneider
  • Alexandra Inayat
  • Julia Welscher
  • Wilhelm Schwieger
  • Tom Münster
  • Gert Kloess
  • Suzan Ibrahim
  • Dirk EnkeEmail author


A new one step approach for the preparation of MFI-type zeolites through direct trans-formation of pre-modified diatomite is reported. Two diatomite species modified by calcination and acid treatment were used as silica and alumina sources. The progress of the transformation was investigated by analyzing samples after different crystallization times at 453 K. Tetrapropylammonium hydroxide was utilized for the first time as bi-functional molecule for silica dissolution in diatomite and structure directing agent during zeolite formation. In this way, the use of an additional alkaline source, such as sodium hydroxide, for silica dissolution was not necessary. The applied diatomite samples contained amorphous silica in combination with impurities like feldspar, anatase and quartz. This allowed the systematic investigation of the influence of modification procedure, amorphous silica content and crystalline impurities of the different diatomite samples on the direct transformation in MFI-type zeolites. During the transformation process, the feldspar was totally dissolved. The quartz content was reduced to <10 wt% in the final products as compared with the modified diatomite starting material. X-ray diffraction, nitrogen adsorption, scanning electron microscopy and optical emission spectroscopy were used to characterize these materials.


Modified diatomite Silica source MFI-type zeolite Amorphous silica Quartz 


  1. 1.
    D. Napierska, L.C.J. Thomassen, D. Lison, J.A. Martens, P.H. Hoet, Part. Fibre Toxicol. 7, 1–32 (2010)CrossRefGoogle Scholar
  2. 2.
    U. Schubert, N. Hüsing, Synthesis of Inorganic Materials, 2nd edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005)Google Scholar
  3. 3.
    H. Ahmad Alyosef, S.S. Ibrahim, J. Welscher, A. Inayat, A. Eilert, R. Denecke, W. Schwieger, T. Münster, G. Kloess, W.-D. Einicke, D. Enke, Int. J. Miner. Proc. 132, 17–25 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Ahmad Alyosef, A. Eilert, J. Welscher, S.S. Ibrahim, R. Denecke, W. Schwieger, D. Enke, Part. Sci. Technol. 31, 524–532 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Ahmad Alyosef, D. Schneider, S. Wassersleben, H. Roggendorf, M. Weiß, A. Eilert, R. Denecke, I. Hartmann, D. Enke, ACS Sustain. Chem. Eng. 3, 2012–2021 (2015)CrossRefGoogle Scholar
  6. 6.
    E.F. Stoermer, J.P. Smol, The Diatoms: Applications for the Environmental and Earth Sciences (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  7. 7.
    O. Hernández-Ramırez, P.I. Hill, D.J. Doocey, S.M. Holmes, J. Mater. Chem. 17, 1804–1808 (2007)CrossRefGoogle Scholar
  8. 8.
    V. Sanhueza, U. Kelm, R. Cid, J. Chem. Technol. Biotechnol. 78, 485–488 (2003)CrossRefGoogle Scholar
  9. 9.
    V. Sanhueza, U. Kelm, R. Cid, L. Lόpez-Escobar, J. Chem. Technol. Biotechnol. 79, 686–690 (2004)CrossRefGoogle Scholar
  10. 10.
    W. Shan, Y. Zhang, Y. Wang, J. Xia, Y. Tang, Chem. Lett. 33, 270–271 (2004)CrossRefGoogle Scholar
  11. 11.
    G.T. Kokotailo, S.L. Lawton, D.H. Olson, W.M. Meier, Nature 272, 437–438 (1978)CrossRefGoogle Scholar
  12. 12.
    M. Chareonpanich, T. Namto, P. Kongkachuichay, J. Limtrakul, Fuel Process. Technol. 85, 1623–1634 (2004)CrossRefGoogle Scholar
  13. 13.
    T.F. Degnan, Top. Catal. 13, 349–356 (2000)CrossRefGoogle Scholar
  14. 14.
    I. Othman Ali, A.M. Hassan, S.M. Shaaban, K.S. Soliman, Sep. Purif. Technol. 83, 38–44 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Caro, M. Noack, P. Kolsch, R. Schafer, Microporous Mesoporous Mater. 38, 3–24 (2000)CrossRefGoogle Scholar
  16. 16.
    M.K. Naskar, D. Kundu, M. Chatterjee, J. Am. Ceram. Soc. 95, 925–930 (2012)CrossRefGoogle Scholar
  17. 17.
    H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, Der Chemica Sinica 2, 166–173 (2011)Google Scholar
  18. 18.
    K. Kordatos, A. Ntziouni, L. Iliadis, V. Kasselouri-Rigopoulou, J. Mater. Cycles Waste Manag. 15, 571–580 (2013)CrossRefGoogle Scholar
  19. 19.
    M.S. Hassan, I.A. Ibrahim, I.S. Ismael, Chin. J. Geochem. 3, 233–241 (1999)CrossRefGoogle Scholar
  20. 20.
    A.A. Zalat, J. Environ. Res. 4, 22–43 (2002)Google Scholar
  21. 21.
    P. Schubert, Der Einfluss der Silicatquelle auf die Synthese von ZSM-5Neue Wege zur Synthese und Charakterisierung (Ph.d. thesis, Johannes Gutenberg-Universität, Mainz, 1985)Google Scholar
  22. 22.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361–1368 (1918)CrossRefGoogle Scholar
  23. 23.
    K.S.W. Sing, K.K. Unger, Chem. Ind. 5, 165–166 (1993)Google Scholar
  24. 24.
    G.T.P. Mabande, G. Pradhan, W. Schwieger, M. Hanebuth, R. Dittmeyer, T. Selvam, A. Zampieri, H. Baser, R. Herrmann, Microporous Mesoporous Mater. 75, 209–220 (2004)CrossRefGoogle Scholar
  25. 25.
    J.C. Groen, J.C. Jansen, J.A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B 108, 13062–13065 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hallah Ahmad Alyosef
    • 1
  • Hans Roggendorf
    • 2
  • Denise Schneider
    • 1
  • Alexandra Inayat
    • 3
  • Julia Welscher
    • 3
  • Wilhelm Schwieger
    • 3
  • Tom Münster
    • 4
  • Gert Kloess
    • 4
  • Suzan Ibrahim
    • 5
  • Dirk Enke
    • 1
    Email author
  1. 1.Institute of Chemical TechnologyUniversity of LeipzigLeipzigGermany
  2. 2.Institute of PhysicsMartin-Luther University Halle-WittenbergHalle (Saale)Germany
  3. 3.Institute of Chemical Reaction EngineeringFriedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany
  4. 4.Institute of Mineralogy, Crystallography and Materials ScienceUniversity of LeipzigLeipzigGermany
  5. 5.Central Metallurgical Research & Development Institute (CMRDI)HelwanEgypt

Personalised recommendations