Journal of Porous Materials

, Volume 23, Issue 6, pp 1537–1545 | Cite as

A facile strategy to fabricate carboxyl-rich carbon spheres with copper-based MOFs through coordination bond

  • Chunhua Ge
  • Yan Du
  • Rui Wang
  • Lili Xue
  • Zhongshuai Wu
  • Tianzhu Xing
  • Xiaochun Ji
  • Lin Ma
  • Xiangdong Zhang
Article

Abstract

A new composite (CCSs/MOFs) of carboxyl-rich carbon spheres (CCSs) and copper-based metal–organic frameworks (MOFs) was for the first time prepared. The CCSs/MOFs composite was synthesized by the coordinated growth of high surface area and porous MOFs, [Cu3(BTC)2(H2O)]n (HKUST-1), on the surface of the functionalized CCSs obtained through a one-step hydrothermal carbonization of glucose with acrylic acid at 180 °C for 24 h. The resulting composites showed a core/shell structure with a tunable diameter arranging from 0.6 to 3.0 μm, and possessed high specific surface area of 495 m2/g and nanoporous structures derived from MOFs. Further, the catalytic oxidation of benzylic alcohol to benzaldehyde as its application was studied.

Keywords

Carbon spheres MOFs Composites Catalysis 

References

  1. 1.
    M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112, 782–835 (2012)CrossRefGoogle Scholar
  2. 2.
    A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998–17999 (2005)CrossRefGoogle Scholar
  3. 3.
    J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869–932 (2012)CrossRefGoogle Scholar
  4. 4.
    Z.Y. Wang, J.J. Wang, M.Y. Li, K.H. Sun, C.J. Liu, Sci. Rep. 4, Article number: 5939 (2014)Google Scholar
  5. 5.
    M. Eddaoudi, H. Li, O.M. Yaghi, J. Am. Chem. Soc. 122, 1391–1397 (2000)CrossRefGoogle Scholar
  6. 6.
    D. Farrusseng, K. Schlichte, B. Spliethoff, A. Wingen, S. Kaskel, J.S. Bradley, F. Schuth, Angew. Chem. Int. Ed. 40, 4204–4207 (2001)CrossRefGoogle Scholar
  7. 7.
    H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, Nature 427, 523–527 (2004)CrossRefGoogle Scholar
  8. 8.
    H.J. Lee, W. Cho, M. Oh, Chem. Commun. 48, 221–223 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Sorribas, B. Zornoza, C. Tellez, J. Coronas, Chem. Commun. 48, 9388–9390 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Ahmed, M. Forster, R. Clowes, D. Bradshaw, P. Myers, H.F. Zhang, J. Mater. Chem. A 1, 3276–3286 (2013)CrossRefGoogle Scholar
  11. 11.
    M.G. Schwab, I. Senkovska, M. Rose, M. Koch, J. Pahnke, G. Jonschker, S. Kaskel, Adv. Eng. Mater. 10, 1151–1155 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Petit, T. Bandosz, Adv. Mater. 21, 4753–4757 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Petit, T. Bandosz, Adv. Funct. Mater. 20, 111–118 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Sun, Y. Li, Angew. Chem. Int. Ed. 43, 597–601 (2004)CrossRefGoogle Scholar
  15. 15.
    S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283, 1148–1150 (1999)CrossRefGoogle Scholar
  16. 16.
    J.C. Liu, J.T. Culp, S. Natesakhawat, B.C. Bockrath, B. Zande, S.G. Sankar, G. Garberoglio, J.K. Johnson, J. Phys. Chem. C 111, 9305–9313 (2007)CrossRefGoogle Scholar
  17. 17.
    C. Petit, B. Mendoza, T. Bandosz, Langmuir 26, 15302–15309 (2010)CrossRefGoogle Scholar
  18. 18.
    H. Wang, L.J. Ma, K.C. Cao, J.X. Geng, J. Liu, Q. Song, X.D. Yang, S.J. Li, J. Hazard. Mater. 229–230, 321–330 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Demir-Cakan, N. Baccile, M. Antonietti, M.M. Titirici, Chem. Mater. 21, 484–490 (2009)CrossRefGoogle Scholar
  20. 20.
    C. Petit, B. Mendoza, D. O’Donnell, T.J. Bandosz, Langmuir 27, 10234–10242 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Vairam, S. Govindarajan, Thermochim. Acta 414, 263–270 (2004)CrossRefGoogle Scholar
  22. 22.
    C. Petit, B. Mendoza, T.J. Bandosz, Chem. Phys. Chem. 11, 3678–3684 (2010)Google Scholar
  23. 23.
    C. Petit, J. Burress, T.J. Bandosz, Carbon 49, 563–572 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Wang, C. Wang, H. Yan, H. Yi, J. Lu, J. Catal. 324, 59–68 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Zahed, H. Hosseini-Monfared, Appl. Surf. Sci. 328, 536–547 (2015)CrossRefGoogle Scholar
  26. 26.
    I. Tamiolakis, I.N. Lykakis, G.S. Armatas, Catal. Today 250, 180–186 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Harada, S. Ikeda, F. Hashimoto, T. Sakata, K. Ikeue, T. Torimoto, M. Matsumura, Langmuir 26, 17720–17725 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chunhua Ge
    • 1
  • Yan Du
    • 1
  • Rui Wang
    • 1
  • Lili Xue
    • 1
  • Zhongshuai Wu
    • 2
  • Tianzhu Xing
    • 1
  • Xiaochun Ji
    • 1
  • Lin Ma
    • 1
  • Xiangdong Zhang
    • 1
  1. 1.College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China
  2. 2.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China

Personalised recommendations