Advertisement

Journal of Porous Materials

, Volume 23, Issue 5, pp 1189–1196 | Cite as

Synthesis and gas sensing properties of SnO2 nanoparticles with different morphologies

  • Makoto Hamanaka
  • Kimie Imakawa
  • Mizuki Yoshida
  • Zhihuan Zhao
  • Shu YinEmail author
  • Xiaoyong Wu
  • Yunfang Huang
  • Jihuai Wu
  • Tsugio Sato
Article
  • 372 Downloads

Abstract

The SnO2 particles with different morphologies of nanorod, nanosheet, nanoparticle and nanodot were synthesized by liquid-phase methods. In addition, Pt was loaded on each prepared SnO2 by dispersing SnO2 particles into PtCl4 2− aqueous solutions containing 0.67 vol% methanol, followed by UV light irradiation for 6 h. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller measurement. The gas sensing properties of the synthesized SnO2 were tested by detecting the change in electric resistivity in flowing aceton and methanol gases with nitrogen base. The gas sensing properties greatly changed depending on not only the specific surface area, but also the exposed crystal plane, i.e., the SnO2 nanorods exposing (111) planes showed the excellent sensitivity and quick response ability, indicating the excellent gas sensing ability of the (111) plane. Furthermore, the Pt loading exceedingly enhanced the gas sensing properties.

Keywords

Semiconductors Microstructure Inorganic compounds Chemical synthesis Surface properties 

Notes

Acknowledgments

This research was partly supported by the Network Joint Research Center for Materials and Devices, the Grant-in-Aid for Science Research (23241025, No. 25289245), the Nippon Sheet Glass Foundation for Materials Science and Engineering, the Hosokawa Powder Technology Foundation.

References

  1. 1.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators, B 3, 147–155 (1991)CrossRefGoogle Scholar
  2. 2.
    H.M. Aliha, A.A. Khodadadi, Y. Mortazavi, The sensing behaviour of metal oxides (ZnO, CuO and Sm2O3) doped-SnO2 fordetection of low concentrations of chlorinated volatile organic compounds. Sens. Actuators, B 181, 637–643 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Mei, J. Deng, X. Yin, M. Zhang, Q. Li, E. Zhang, Z. Xu, L. Chen, T. Wang, Ultrasensitive ethanol sensor based on 3D aloe-like SnO2. Sens. Actuators, B 166–167, 7–11 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Tiemann, Porous metal oxides as gas sensors. Chem. Eur. J. 13, 8376–8388 (2007)CrossRefGoogle Scholar
  5. 5.
    P. Sun, Y. Yu, J. Xu, Y. Sun, J. Ma, G. Lu, One-step synthesis and gas sensing characteristics of hierarchical SnO2 nanorods modified by Pd loading. Sens. Actuators, B 160, 244–250 (2011)CrossRefGoogle Scholar
  6. 6.
    B. Zhu, C. Yin, Z. Zhang, C. Tao, L. Yang, Investigation of the hydrogen response characteristics for sol–gel-derived Pd-doped, Fe-doped and PEG-added SnO2 nano-thin films. Sens. Actuators, B 178, 418–425 (2013)CrossRefGoogle Scholar
  7. 7.
    Z. Lin, W. Songa, H. Yang, Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment. Sens. Actuators, B 173, 22–27 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Hieda, T. Hyodo, Y. Shimizu, M. Egashira, Preparation of porous tin dioxide powder by ultrasonic spray pyrolysis and their application to sensor materials. Sens. Actuators, B 133, 144–150 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Gu, X. Xu, J. Huang, W. Wang, Y. Sun, J. Liu, Porous flower-like SnO2 nanostructures as sensitive gas sensors for volatile organic compounds detection. Sens. Actuators, B 174, 31–38 (2012)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, H. Yang, Structural characterization and gas sensing property of Cd-doped SnO2 nanocrystallites synthesized by mechanochemical reaction. Sens. Actuators, B 173, 127–132 (2012)CrossRefGoogle Scholar
  11. 11.
    W. Zeng, B. Miao, Q. Zhou, L. Lin, Hydrothermal synthesis and gas sensing properties of variety low dimensional nanostructures of SnO2. Phys. E 47, 116–121 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Liu, M. Xie, Y. Li, X. Guo, W. Ji, W. Ding, Synthesis and selective gas-sensing properties of hierarchically porous intestine-like SnO2 hollow nanostructures. Mater. Chem. Phys. 123, 109–113 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Yue, Y. GuO, R. Tan, P. Cui, Y. Li, W. Song, Synthesis of SnO2 nano-sheets by a template-free hydrothermal method. Mater. Lett. 63, 2085–2088 (2009)CrossRefGoogle Scholar
  14. 14.
    I.S. Hwang, J.K. Choi, H.S. Woo, S.J. Kim, S.Y. Jung, T.Y. Seong, I.D. Kim, J.H. Lee, Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl. Mater. Interfaces 3, 3140–3145 (2011)CrossRefGoogle Scholar
  15. 15.
    H.G. Na, J.C. Yang, D.S. Kwak, Y.J. Kwon, C. Lee, S.S. Kim, H.W. Kim, Drastic improvement of sensing characteristics in SnO2 nanowires by functionalizing with Pt. J. Nanosci. Nanotechnol. 13, 6216–6221 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Yuasa, T. Kida, K. Shimanoe, Preparation of a stable sol suspension of Pd-loaded SnO2 nanocrystals by a photochemical deposition method for highly sensitive semiconductor gas sensors. ACS Appl. Mater. Interfaces 4, 4231–4236 (2012)CrossRefGoogle Scholar
  17. 17.
    S.W. Choi, J. Zhang, K. Akash, S.S. Kim, H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers. Sens. Actuators, B 169, 54–60 (2012)CrossRefGoogle Scholar
  18. 18.
    N.V. Hieu, P.T.H. Van, L.T. Nhan, N.V. Duy, N.D. Hoa, Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with ptype NiO nanoparticles. Appl. Phys. Lett. 101, 253106 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Jiaqiang, W. Dinga, Q. Lipeng, Y. Weijun, P. Qingyi, SnO2 nanorods and hollow spheres: controlled synthesis and gas sensing properties. Sens. Actuators, B 137, 490–495 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Yang, Y. Gu, Y. Li, J. Zheng, X. Li, Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Mater. 58, 866–874 (2010)CrossRefGoogle Scholar
  21. 21.
    J.S. Rani, V. Ramakrishnan, Interaction of Schiff base ligand with tin dioxide nanoparticles: optical studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 170–174 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Ma, H. Song, C. Guan, Interfacial oxidation–dehydration induced formation of porous SnO2 hollow nanospheres and their gas sensing properties. Sens. Actuators B 177, 196–204 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Vayssieres, M. Graetzel, Highly ordered SnO2 nanorod arrays from controlled aqueous growth. Angew. Chem. Int. Ed. 43, 3666–3670 (2004)CrossRefGoogle Scholar
  24. 24.
    F. Izumi, K. Momma, Solid State Phenom. 130, 15–20 (2007)CrossRefGoogle Scholar
  25. 25.
    C. Dong, X. Liu, X. Xiao, G. Chen, Y. Wang, I. Djerdj, Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response. J. Mater. Chem. A 2, 20089–20095 (2014)CrossRefGoogle Scholar
  26. 26.
    X. Wang, X. Han, S. Xie, Q. Kuang, Y. Jiang, S. Zhang, X. Mu, G. Chen, Z. Xie, L. Zheng, Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets. Chem. Eur. J. 18, 2283–2289 (2012)CrossRefGoogle Scholar
  27. 27.
    I. Kocemba, J. Rynkowski, The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens. Actuators, B 155, 659–666 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Makoto Hamanaka
    • 1
  • Kimie Imakawa
    • 1
  • Mizuki Yoshida
    • 1
  • Zhihuan Zhao
    • 1
    • 2
  • Shu Yin
    • 1
    • 2
    • 3
    Email author
  • Xiaoyong Wu
    • 1
  • Yunfang Huang
    • 3
  • Jihuai Wu
    • 3
  • Tsugio Sato
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.Taiyuan University of TechnologyTaiyuanChina
  3. 3.Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical ChemistryHuaqiao UniversityQuanzhouChina

Personalised recommendations