Journal of Porous Materials

, Volume 22, Issue 5, pp 1215–1226 | Cite as

Bi-layered porous constructs of PCL-coated 45S5 bioactive glass and electrospun collagen-PCL fibers

  • Preethi Balasubramanian
  • Judith A. Roether
  • Dirk W. Schubert
  • Justus P. Beier
  • Aldo R. BoccacciniEmail author


A simple yet promising approach to construct bi-layered scaffolds using bioactive ceramics and biodegradable polymers is presented. This method involves two versatile fabrication techniques used in the field of TE: foam replication process and electrospinning. By the foam replication method, three-dimensional 45S5 bioactive glass (BG)-based scaffolds with high porosity, in the range of 95.8 ± 0.9 %, were produced. To improve the mechanical properties of the BG scaffolds, dip-coating using polycaprolactone (PCL) was performed, which led to a significant increase in the compressive strength of the scaffolds. In order to develop a bi-layered construct, bead-less submicrometric fibers of collagen-PCL were electrospun over the PCL-coated BG scaffolds. Surface morphology, surface properties and mechanical strength of the bi-layered construct were evaluated using scanning electron microscopy analysis, contact angle measurements and compressive strength testing, respectively. In vitro degradation of the collagen-PCL fibers in phosphate buffered saline and in vitro bioactivity of the bi-layered constructs in simulated body fluid were investigated. Formation of hydroxyapatite on the PCL-coated BG and along the morphology of the collagen-PCL fibers was ascertained using different characterization techniques. The bi-layered construct is intended for interface tissue engineering applications where the PCL-coated BG scaffold, which is highly bioactive, can serve as a support for the bone side and the composite collagen-PCL submicrometric fibers are intended for the cartilage side.


Osteochondral region Electrospinning In vitro degradation Bioactivity Scaffold 



The authors would like to acknowledge the European Commission funding under the 7th Framework Programme (Marie Curie Initial Training Networks; Grant Number: 289958, Bioceramics for bone repair). The authors thank Dr. Patcharakamon Nooeaid, Ms Yaping Ding, Mr Wei Li and Dr Menti Goudouri (Institute of Biomaterials, University of Erlangen-Nuremberg) for experimental support.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    N.J. Castro, S.A. Hacking, L.G. Zhang, Ann. Biomed. Eng. 40, 1628 (2012)CrossRefGoogle Scholar
  2. 2.
    R. Langer, J.P. Vacanti, Science 260, 920 (1993)CrossRefGoogle Scholar
  3. 3.
    D.W. Sommerfeldt, C.T. Rubin, Eur. Spine J. 10(Suppl 2), S86 (2001)Google Scholar
  4. 4.
    J.M. Mansour, in Kinesiology: the mechanics and pathomechanics of human movement, ed. By C. A. Oatis (Lippincott Williams and Wilkins, Philadelphia, 2003), p. 66Google Scholar
  5. 5.
    B. Scopp, J. Mandelbaum, Orthop. Sport. Med. Board Rev. Man. 2, 1 (2005)Google Scholar
  6. 6.
    S.P. Nukavarapu, D.L. Dorcemus, Biotechnol. Adv. 31, 706 (2013)CrossRefGoogle Scholar
  7. 7.
    I. Martin, S. Miot, A. Barbero, M. Jakob, D. Wendt, J. Biomech. 40, 750 (2007)CrossRefGoogle Scholar
  8. 8.
    P. Nooeaid, V. Salih, J.P. Beier, A.R. Boccaccini, J. Cell Mol. Med. 16, 2247 (2012)CrossRefGoogle Scholar
  9. 9.
    T.J. Levingstone, A. Matsiko, G. Dickson, F.J. O’Brien, J.P. Gleeson, Acta Biomater. 10, 1996 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Liverani, J.A. Roether, P. Nooeaid, M. Trombetta, D.W. Schubert, A.R. Boccaccini, Mater. Sci. Eng. A 557, 54 (2012)CrossRefGoogle Scholar
  11. 11.
    D.M. Yunos, Z. Ahmad, V. Salih, A.R. Boccaccini, J. Biomater. Appl. 27, 537 (2013)CrossRefGoogle Scholar
  12. 12.
    L.L. Hench, J. Mater. Sci. Mater. Med. 17, 967 (2006)CrossRefGoogle Scholar
  13. 13.
    P. Balasubramanian, M. Prabhakaran, M. Sireesha, S. Ramakrishna, Adv. Polym. Sci. 251, 173 (2013)CrossRefGoogle Scholar
  14. 14.
    F.C. Linn, L. Sokoloff, Arthritis Rheum. 8, 481 (1965)CrossRefGoogle Scholar
  15. 15.
    A. Cipitria, A. Skelton, T.R. Dargaville, P.D. Dalton, D.W. Hutmacher, J. Mater. Chem. 21, 9419 (2011)CrossRefGoogle Scholar
  16. 16.
    Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials 27, 2414 (2006)CrossRefGoogle Scholar
  17. 17.
    D. Mohamad Yunos, O. Bretcanu, A. R. Boccaccini, J. Mater. Sci. 43, 4433 (2008)Google Scholar
  18. 18.
    S. Dorozhkin, T. Ajaal, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 223, 459 (2009)CrossRefGoogle Scholar
  19. 19.
    W.-E. Teo, W. He, S. Ramakrishna, Biotechnol. J. 1, 918 (2006)CrossRefGoogle Scholar
  20. 20.
    Q.P. Pham, U. Sharma, A.G. Mikos, Tissue Eng. 12, 1197 (2006)CrossRefGoogle Scholar
  21. 21.
    Q.Z. Chen, A.R. Boccaccini, J. Biomed. Mater. Res. A 77, 445 (2006)CrossRefGoogle Scholar
  22. 22.
    K.L. Menzies, L. Jones, Optom. Vis. Sci. 87, 387 (2010)Google Scholar
  23. 23.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)CrossRefGoogle Scholar
  24. 24.
    O. Bretcanu, S. Misra, I. Roy, C. Renghini, F. Fiori, A.R. Boccaccini, V. Salih, J. Tissue Eng. Regen. Med. 3, 139 (2009)CrossRefGoogle Scholar
  25. 25.
    F. Tan, M. Naciri, M. Al-Rubeai, Biotechnol. Bioeng. 108, 454 (2011)CrossRefGoogle Scholar
  26. 26.
    M.A. Alvarez-Perez, V. Guarino, V. Cirillo, L. Ambrosio, Biomacromolecules 11, 2238 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Ravichandran, J.R. Venugopal, S. Sundarrajan, S. Mukherjee, S. Ramakrishna, World J. Cardiol. 5, 28 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Nooeaid, J.A. Roether, E. Weber, D.W. Schubert, A.R. Boccaccini, Adv. Eng. Mater. 16, 319 (2014)Google Scholar
  29. 29.
    O. Bretcanu, A.R. Boccaccini, V. Salih, J. Mater. Sci. 47, 5661 (2012)CrossRefGoogle Scholar
  30. 30.
    J.M. Hackett, T.T. Dang, E.C. Tsai, X. Cao, Materials (Basel). 3, 3714 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Venugopal, Y.Z. Zhang, S. Ramakrishna, Nanotechnology 16, 2138 (2005)CrossRefGoogle Scholar
  32. 32.
    A.K. Bassi, J.E. Gough, M. Zakikhani, S. Downes, J. Tissue Eng. 2011, 1 (2011)Google Scholar
  33. 33.
    D.M. Yunos, Z. Ahmad, A.R. Boccaccini, J. Chem. Technol. Biotechnol. 85, 768 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Bil, J. Ryszkowska, J.A. Roether, O. Bretcanu, A.R. Boccaccini, Biomed. Mater. 2, 93 (2007)Google Scholar
  35. 35.
    J. Huang, L. Di Silvio, M. Wang, I. Rehman, C. Ohtsuki, W. Bonfield, J. Mater. Sci. Mater. Med. 8, 809 (1997)CrossRefGoogle Scholar
  36. 36.
    J. Roether, A. Boccaccini, L. Hench, V. Maquet, S. Gautier, R. Jérôme, Biomaterials 23, 3871 (2002)CrossRefGoogle Scholar
  37. 37.
    J. Hum, K.W. Luczynski, P. Nooeaid, P. Newby, O. Lahayne, C. Hellmich, A.R. Boccaccini, Strain 49, 431 (2013)Google Scholar
  38. 38.
    A. Philippart, A.R. Boccaccini, C. Fleck, D.W. Schubert, J.A. Roether, Expert Rev. Med. Devices 12, 93 (2015)CrossRefGoogle Scholar
  39. 39.
    M.P. Wolcott, Mater. Sci. Eng. A 123, 282 (1990)CrossRefGoogle Scholar
  40. 40.
    T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar, J. Appl. Polym. Sci. 96, 557 (2005)CrossRefGoogle Scholar
  41. 41.
    S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, Z. Ma, In An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005), p. 382CrossRefGoogle Scholar
  42. 42.
    J.M. Coburn, M. Gibson, S. Monagle, Z. Patterson, J.H. Elisseeff, Proc. Natl. Acad. Sci. 109, 10012 (2012)CrossRefGoogle Scholar
  43. 43.
    N.W. Garrigues, D. Little, J. Sanchez-Adams, D.S. Ruch, F. Guilak, J. Biomed. Mater. Res. A 59784, 28 (2013)Google Scholar
  44. 44.
    A. Thorvaldsson, H. Stenhamre, P. Gatenholm, P. Walkenström, Biomacromolecules 9, 1044 (2008)CrossRefGoogle Scholar
  45. 45.
    M.E. Casper, J.S. Fitzsimmons, J.J. Stone, A.O. Meza, Y. Huang, T.J. Ruesink, S.W. O’Driscoll, G.G. Reinholz, Osteoarthritis Cartilage 18, 981 (2010)CrossRefGoogle Scholar
  46. 46.
    W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Mater. Sci. Eng. A 362, 40 (2003)CrossRefGoogle Scholar
  47. 47.
    B.L. Schumacher, J.A. Block, T.M. Schmid, M.B. Aydelotte, K.E. Kuettner, Arch. Biochem. Biophys. 311, 144 (1994)CrossRefGoogle Scholar
  48. 48.
    H. Mitsuyama, R.M. Healey, R.A. Terkeltaub, R.D. Coutts, D. Amiel, Osteoarthr. Cartil. 15, 559 (2007)CrossRefGoogle Scholar
  49. 49.
    Q. Yao, P. Nooeaid, R. Detsch, J.A. Roether, Y. Dong, O.-M. Goudouri, D.W. Schubert, A.R. Boccaccini, J. Biomed. Mater. Res. A. 102, 4510 (2014)Google Scholar
  50. 50.
    P. Gentile, V. Chiono, C. Tonda-Turo, C. Mattu, F. Baino, C. Vitale-Brovarone, G. Clardelli, Mater. Lett. 89, 74 (2012)CrossRefGoogle Scholar
  51. 51.
    P. Gentile, M. Mattioli-Belmonte, V. Chiono, C. Ferretti, F. Baino, C. Tonda-Turo, C. Vitale-Brovarone, I. Pashkuleva, R.L. Reis, G. Ciardelli, J. Biomed. Mater. Res. A 100, 2654 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Preethi Balasubramanian
    • 1
  • Judith A. Roether
    • 2
  • Dirk W. Schubert
    • 2
  • Justus P. Beier
    • 3
  • Aldo R. Boccaccini
    • 1
    Email author
  1. 1.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of Materials Science and Engineering, Institute of Polymer MaterialsUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital ErlangenUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations