Journal of Porous Materials

, Volume 22, Issue 4, pp 1065–1071 | Cite as

Synthesis procedure optimization of mesoporous carbon using commercial silica-gel as template for dye adsorption

  • J. M. Gómez
  • A. Rodríguez
  • J. García
  • S. Álvarez
  • J. Galán


Synthesis procedure of disordered mesoporous carbon, using commercial silica gel as template, was optimized. The replica method by sucrose/silica gel composite carbonization, followed by silica removal, was used to prepare the mesoporous carbon. Plackett–Burman experimental design allowed the comparison of the individual influence of five parameters on the textural properties and the adsorption capacity of Methylene Blue. All parameters were investigated at two widely spaced levels. Statistical analysis revealed that the sucrose/silica weight ratio and the number of impregnation steps were the variables with major influence in the properties of the as-synthesized carbon. Deeper study, with more levels for the optimization of these variables, was carried out. Mesoporous carbon with large BET surface area (>900 m2/g with ≈10 % of microporous area), narrow pore size distribution and adsorption capacity above 230 mg/g was obtained carrying out the impregnation in only one step and with a sucrose/silica weight ratio of 0.8. The effect of time and temperature carbonization in the properties of the final mesoporous carbon was negligible. However, these variables are important in the reduction of the process cost by saving energy. The lowest values of these variables, which provide a mesoporous carbon with suitable properties and acceptable adsorption capacity, were 600 °C and 15 min.


Mesoporous carbon Silica-gel Plackett–Burman Adsorption Dye 



The authors gratefully acknowledge the financial support from Ministerio de Educación y Ciencia by CTQ2008-02728 project, BES–2009–014236 Grant, CONSOLIDER Program through TRAGUA Network CSD2006-44 and Comunidad de Madrid through REMTAVARES Network S- S2009/AMB-1588.


  1. 1.
    C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 47, 3696 (2008)CrossRefGoogle Scholar
  2. 2.
    T. Kyotani, Carbon 38, 269 (2000)CrossRefGoogle Scholar
  3. 3.
    R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B 103, 37.7743 (1999)Google Scholar
  4. 4.
    S.H. Joo, S. Jun, R. Ryoo, Microporous Mesoporous Mater. 44–45, 153 (2001)CrossRefGoogle Scholar
  5. 5.
    J.H. Knox, B. Kaur, G.R. Millward, J. Chromatogr. 352, 3 (1986)CrossRefGoogle Scholar
  6. 6.
    A. Fuertes, D.M. Nevskaia, Microporous Mesoporous Mater. 62, 177 (2003)CrossRefGoogle Scholar
  7. 7.
    D.D. Asouhidou, K.S. Triantafyllidis, N.K. Lazaridis, K.A. Matis, S. Kim, T.J. Pinnavaia, Microporous Mesoporous Mater. 117, 257 (2009)CrossRefGoogle Scholar
  8. 8.
    L. Calvillo, R. Moliner, M.J. Lázaro, Mater. Chem. Phys. 118, 249 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Galán, A. Rodríguez, J.M. Gómez, S.J. Allen, G.M. Walker, Chem. Eng. J. 219, 62 (2013)CrossRefGoogle Scholar
  10. 10.
    R.L. Plackett, J.P. Burman, Biometrika 33, 305 (1946)CrossRefGoogle Scholar
  11. 11.
    R.A. Stowe, R.P. Mayer, Ind. Eng. Chem. 58, 36 (1966)CrossRefGoogle Scholar
  12. 12.
    J.M. Gómez, J. Galán, A. Rodríguez, G.M. Walker, J. Environ. Manag. 146, 355 (2014)CrossRefGoogle Scholar
  13. 13.
    N. Kannan, M. Sundaram, Dyes Pigm. 51, 25 (2001)CrossRefGoogle Scholar
  14. 14.
    G. Karaçetin, S. Sivrikaya, M. Imamoğlu, J. Anal. Appl. Pyrolysis 110, 270 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. M. Gómez
    • 1
  • A. Rodríguez
    • 1
  • J. García
    • 1
  • S. Álvarez
    • 1
  • J. Galán
    • 1
  1. 1.Chemical Engineering DepartmentComplutense University of MadridMadridSpain

Personalised recommendations