Journal of Porous Materials

, Volume 22, Issue 4, pp 843–850 | Cite as

An investigation into the crystallization of low-silica X zeolite



The crystallization of low-silica X (LSX) zeolite with FAU topology was examined under hydrothermal synthesis conditions. PXRD was employed to follow the evolution of the long-range ordering of the gel. Raman spectra provided information on various ring and cage species existing in the gel. 27Al and 29Si solid-state NMR spectroscopy was utilized to monitor the change in local environment of tetrahedral sites. The results indicate that an amorphous aluminosilicate phase was formed immediately upon mixing different reactive species. Hydrothermal treatment led to the formation of sodalite-cage like species and the species with larger cavities, joint four-member rings (4Rs) and branched 4Rs, which are the structural building units of the FAU framework. These units were assembled into the crystalline structure of LSX zeolite. 23Na and 39K solid-state NMR results show that the transformation process was accompanied by the changes of the local structure of hydrated Na+ and K+ ions. The two types of cations may work synergistically to template the crystallization of LSX zeolite.


Zeolites Faujasite Crystallization Hydrothermal synthesis Solid-state NMR Raman spectroscopy 



Y. H. thanks the Natural Science and Engineering Research Council of Canada for a Discovery grant. Access to the 900 MHz NMR spectrometer was provided by the Canadian National Ultrahigh Field NMR Facility for Solids ( We thank Dr. V. Terskikh for acquiring 39K NMR spectra and Mr. P. He for 39K spectral simulation. We also thank Prof. Yang Song for the access of a Raman spectrometer. This work was funded by the Natural Science and Engineering Research Council of Canada (2012).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    R.J. Davis, J. Catal. 216, 396 (2003)CrossRefGoogle Scholar
  2. 2.
    R.A. Schoonheydt, P. Geerlings, E.A. Pidko, R.A. van Santen, J. Mater. Chem. 22, 18705 (2012)CrossRefGoogle Scholar
  3. 3.
    B. Smit, T.L.M. Maesen, Chem. Rev. 108, 4125 (2008)CrossRefGoogle Scholar
  4. 4.
    Ch. Baerlocher, L.B. McCusker, Database of zeolite structures.
  5. 5.
    L. Zhang, A.N.C. Laak, P.E. Jongh, K.P. Jong, Microporous Mesoporous Mater. 126, 115 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Lee, S.W. Carr, J.B. Parise, Chem. Mater. 10, 2561 (1998)CrossRefGoogle Scholar
  7. 7.
    T. Frising, P. Leflaive, Microporous Mesoporous Mater. 114, 27 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Kovacheva, K. Arishtirova, A. Predoeva, React. Kinet. Catal. Lett. 79, 149 (2003)CrossRefGoogle Scholar
  9. 9.
    A.F. Ojo, F.R. Fitch, M. Bülow, C.S. Gittleman, S.R. Jale, US Patent 6596256 (2003)Google Scholar
  10. 10.
    R.T. Yang, N.D. Hutson, US Patent 6780806 (2004)Google Scholar
  11. 11.
    R. Jasra, N. Choudary, S. Bhat, Ind. Eng. Chem. Res. 35, 4221 (1996)CrossRefGoogle Scholar
  12. 12.
    E. Basaldella, J. Tara, Zeolites 15, 243 (1995)CrossRefGoogle Scholar
  13. 13.
    G. Vitale, L.M. Bull, R.E. Morris, A.K. Cheetham, B.H. Toby, C.G. Coe, J.E. MacDougall, J. Phys. Chem. 99, 16087 (1995)CrossRefGoogle Scholar
  14. 14.
    D. Schaefer, D. Favre, M. Wilhelm, S. Weigel, B.J. Chmelka, Am. Chem. Soc. 119, 9252 (1997)CrossRefGoogle Scholar
  15. 15.
    J. Plevert, F. Di Renzo, F. Fajula, G. Chiari, J. Phys. Chem. B 101, 10340 (1997)CrossRefGoogle Scholar
  16. 16.
    M. Feuerstein, G. Engelhardt, P. McDaniel, J. MacDougall, T. Gaffney, Microporous Mesoporous Mater. 26, 27 (1998)CrossRefGoogle Scholar
  17. 17.
    S.R. Jale, M. Büow, F.R. Fitch, N. Perelman, D. Shen, J. Phys. Chem. B 104, 5272 (2000)CrossRefGoogle Scholar
  18. 18.
    US Patent, 6, 264, 881Google Scholar
  19. 19.
    S. Caldarelli, A. Buchholz, M. Hunger, J. Am. Chem. Soc. 123, 7118 (2001)CrossRefGoogle Scholar
  20. 20.
    J. Plévert, T. Okubo, Y. Wada, M. O’Keeffe, T. Tatsumi, Chem. Commun. 20, 2112 (2001)CrossRefGoogle Scholar
  21. 21.
    V.B. Kazansky, M. Bülow, E. Tichomirova, Adsorption 7, 291 (2001)CrossRefGoogle Scholar
  22. 22.
    D. Shen, M. Bülow, S.R. Jale, F.R. Fitch, A.F. Ojo, Microporous Mesoporous Mater. 48, 211 (2001)CrossRefGoogle Scholar
  23. 23.
    T. Loeser, D. Freude, G.T.P. Mabande, W. Schwieger, Chem. Phys. Lett. 370, 32 (2003)CrossRefGoogle Scholar
  24. 24.
    J.C. Buhl, M. Gerstmann, W. Lutz, A.Z. Ritzmann, Anorg. Allg. Chem. 630, 604 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Romero, J. Gomez, G. Ovejero, A. Rodriguez, Mater. Res. Bull. 39, 389 (2004)CrossRefGoogle Scholar
  26. 26.
    J.E. Readman, C.P. Grey, M. Ziliox, L.M. Bull, A. Samoson, Solid State Nucl. Magn. Reson. 26, 153 (2004)CrossRefGoogle Scholar
  27. 27.
    V.B. Kazansky, N.A. Sokolova, M. Bülow, Microporous Mesoporous Mater. 67, 283 (2004)CrossRefGoogle Scholar
  28. 28.
    N. Sokolova, V. Kazanskii, Kinet. Catal. 46, 879 (2005)CrossRefGoogle Scholar
  29. 29.
    P. Khemthong, J. Wittayakun, S. Prayoonpokarach, Suranaree J. Sci. Technol. 14, 367 (2007)Google Scholar
  30. 30.
    A. Wozniak, B. Marler, K. Angermund, H. Gies, Chem. Mater. 20, 5968 (2008)CrossRefGoogle Scholar
  31. 31.
    D. Schneider, H. Toufar, A. Samoson, D. Freude, Solid State Nucl. Magn. Reson. 35, 87 (2009)CrossRefGoogle Scholar
  32. 32.
    H. Guesmi, P. Massiani, H. Nouali, J.L. Paillaud, Microporous Mesoporous Mater. 159, 87 (2012)CrossRefGoogle Scholar
  33. 33.
    G.H. Kuhl, Zeolites 7, 451 (1987)CrossRefGoogle Scholar
  34. 34.
    M. Iwama, Y. Suzuki, J. Plévert, K. Itabashi, M. Ogura, T. Okubo, Cryst. Growth Des. 10, 3471 (2010)CrossRefGoogle Scholar
  35. 35.
    G. Xiong, Y. Yu, Z. Feng, Q. Xin, F.S. Xiao, C. Li, Microporous Mesoporous Mater. 42, 317 (2001)CrossRefGoogle Scholar
  36. 36.
    F. Fan, Z. Feng, G. Li, K. Sun, P. Ying, C. Li, Chem. Eur. J. 14, 5125 (2008)CrossRefGoogle Scholar
  37. 37.
    F. Fan, Z. Feng, C. Li, Chem. Soc. Rev. 39, 4794 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Depla, E. Verheyen, A. Veyfeyken, E. Gobechiya, T. Hartmann, R. Schaefer, J.A. Martens, C.E.A. Kirschhock, Phys. Chem. Chem. Phys. 13, 13730 (2011)CrossRefGoogle Scholar
  39. 39.
    B. Lok, T. Cannan, C. Messina, Zeolites 3, 282 (1983)CrossRefGoogle Scholar
  40. 40.
    S. Le Caér, F. Brunet, C. Chatelain, D. Durand, V. Dauvois, T. Charpentier, JPh Renault, J. Phys. Chem. C 116, 4748 (2012)CrossRefGoogle Scholar
  41. 41.
    K. Eichele, R.E. Wasylishen, v. 1.19.15 edn. (2009)Google Scholar
  42. 42.
    A. Inayat, I. Knoke, E. Spiecker, W. Schwieger, Angew. Chem. Int. Ed. 51, 1962 (2012)CrossRefGoogle Scholar
  43. 43.
    P.K. Dutta, K.M. Rao, J.Y. Park, J. Phys. Chem. 95, 6654 (1991)CrossRefGoogle Scholar
  44. 44.
    P.K. Dutta, D. Shieh, M. Puri, Zeolites 8, 306 (1988)CrossRefGoogle Scholar
  45. 45.
    C. Bremard, M. Le Maire, J. Phys. Chem. 97, 9695 (1993)CrossRefGoogle Scholar
  46. 46.
    A. Miecznikowski, J. Hanuza, Zeolites 5, 188 (1985)CrossRefGoogle Scholar
  47. 47.
    J. Twu, P.K. Dutta, C.T. Kresge, Zeolites 11, 672 (1991)CrossRefGoogle Scholar
  48. 48.
    P.K. Dutta, D. Shieh, M.J. Puri, Phys. Chem. 91, 2332 (1987)CrossRefGoogle Scholar
  49. 49.
    P.K. Dutta, J. Twu, J. Phys. Chem. 95, 2498 (1991)CrossRefGoogle Scholar
  50. 50.
    W. Yan, X. Song, R. Xu, Microporous Mesoporous Mater. 123, 50 (2009)CrossRefGoogle Scholar
  51. 51.
    T. Cheng, J. Xu, X. Li, Y. Li, B. Zhang, W. Yan, J. Yu, H. Sun, F. Deng, R. Xu, Microporous Mesoporous Mater. 152, 190 (2012)CrossRefGoogle Scholar
  52. 52.
    P. Bodart, J.B. Nagy, Z. Gabelica, E.G. Derouane, J. Chim. Phys. 83, 777 (1986)Google Scholar
  53. 53.
    L. Ren, C. Li, F. Fan, Q. Guo, D. Liang, Z. Feng, C. Li, S. Li, F.S. Xiao, Chem. Eur. J. 17, 6162 (2011)CrossRefGoogle Scholar
  54. 54.
    C. Doremieux-Morin, C. Martin, J.M. Bregeault, J. Fraissard, Appl. Catal. 77, 149 (1991)CrossRefGoogle Scholar
  55. 55.
    G.E. Maciel, C.E. Bronnimann, R.C. Zeigler, I.S. Chuang, D.R. Kinney, E.A. Keiter, Adv. Chem. Ser. 234, 269 (1994)CrossRefGoogle Scholar
  56. 56.
    C.C. Liu, G.E. Maciel, J. Am. Chem. Soc. 118, 5103 (1996)CrossRefGoogle Scholar
  57. 57.
    M. Ogura, Y. Kawazu, H. Takahashi, T. Okubo, Chem. Mater. 15, 2661 (2003)CrossRefGoogle Scholar
  58. 58.
    E. Lippmaa, M. Maegi, A. Samoson, M. Tarmak, G. Engelhardt, J. Am. Chem. Soc. 103, 4992 (1981)CrossRefGoogle Scholar
  59. 59.
    H. Koller, G. Engelhardt, A.P.M. Kentgens, J. Sauer, J. Phys. Chem. 98, 1544 (1994)CrossRefGoogle Scholar
  60. 60.
    I. Hannus, I. Kiricsi, P. Lentz, J. Nagy, Colloids Surf. A 158, 29 (1999)CrossRefGoogle Scholar
  61. 61.
    A. Seidel, U. Tracht, B. Boddenberg, J. Phys. Chem. 100, 15917 (1996)CrossRefGoogle Scholar
  62. 62.
    I.L. Moudrakovski, J.A. Ripmeester, J. Phys. Chem. B 111, 491 (2007)CrossRefGoogle Scholar
  63. 63.
    A.T. Durant, K.J. MacKenzie, H. Maekawa, Dalton Trans. 40, 4865 (2011)CrossRefGoogle Scholar
  64. 64.
    V.F. Barbosa, K.J. MacKenzie, Mater. Lett. 57, 1477 (2003)CrossRefGoogle Scholar
  65. 65.
    M. Smith, Clays Clay Miner. 40, 253 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryThe University of Western OntarioLondonCanada

Personalised recommendations