Advertisement

Journal of Porous Materials

, Volume 22, Issue 3, pp 705–711 | Cite as

Preparation and characterization of mesostructured Zr-SBA-16: efficient Lewis acidic catalyst for Hantzsch reaction

  • Rajamanickam Maheswari
  • Vinju Vasudevan Srinivasan
  • Anand Ramanathan
  • Muthusamy P. Pachamuthu
  • Rajamanickam Rajalakshmi
  • Gaffar Imran
Article

Abstract

Mesostructured Zr-SBA-16 (3D cubic arrangement, Im3m space group) with different Si/Zr ratio was successfully synthesized by using Pluronic F127 triblock copolymer and n-butanol as a structure directing agent. Successful incorporation of Zr4+ ions was achieved without any pH adjustments up to ~6.5 wt% of Zr loading. Different analytical techniques such as SAXS, N2-physisortion and HR-TEM were used to ascertain the structure of Zr-SBA-16 samples whereas, diffuse reflectance UV–Vis, pyridine adsorbed FTIR and NH3 desorbed TPD methods were assessed to understand the nature of Zr incorporation. The Lewis acidity of Zr-SBA-16 was explored in the synthesis of Hantzsch 1,4-dihydropyridine derivatives via condensation of substituted benzaldehyde, ethyl acetoacetate and ammonium acetate.

Keywords

Amorphous materials Zr-SBA-16 Lewis acid Hantzsch reaction 

References

  1. 1.
    A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411 (2007)CrossRefGoogle Scholar
  2. 2.
    E. Antonakou, A. Lappas, M.H. Nilsen, A. Bouzga, M. Stöcker, Fuel 85, 2202 (2006)CrossRefGoogle Scholar
  3. 3.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mccullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  4. 4.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)CrossRefGoogle Scholar
  5. 5.
    F. Kleitz, T.-W. Kim, R. Ryoo, Langmuir 22, 440 (2005)CrossRefGoogle Scholar
  6. 6.
    E.M. Rivera-Muñoz, R. Huirache-Acuña, Int. J. Mol. Sci. 11, 3069 (2010)CrossRefGoogle Scholar
  7. 7.
    L. Zhao, Y. Dong, X. Zhan, Y. Cheng, Y. Zhu, F. Yuan, H. Fu, Catal. Lett. 142, 619 (2012)CrossRefGoogle Scholar
  8. 8.
    A.T. Shah, B. Li, Z.E.A. Abdalla, Microporous Mesoporous Mater. 130, 248 (2010)CrossRefGoogle Scholar
  9. 9.
    A.T. Shah, B. Li, Z.E. Ali, Abdalla. J. Colloid Interface Sci. 336, 707 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Maheswari, M.P. Pachamuthu, A. Ramanathan, B. Subramaniam, Ind. Eng. Chem. Res. 53, 18833 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Ramanathan, H. Zhu, R. Maheswari, P.S. Thapa, B. Subramaniam, Ind. Eng. Chem. Res. (2014). doi: 10.1021/ie504386g Google Scholar
  12. 12.
    W. Yan, A. Ramanathan, M. Ghanta, B. Subramaniam, Catal. Sci. Technol. 4, 4433 (2014)Google Scholar
  13. 13.
    J.M.R. Gallo, C. Bisio, L. Marchese, H.O. Pastore, Microporous Mesoporous Mater. 145, 124 (2011)CrossRefGoogle Scholar
  14. 14.
    N. Jiang, J.-B. Koo, S.-C. Han, S.-E. Park, Res. Chem. Intermed. 34, 507 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Selvaraj, K. Shanthi, R. Maheswari, A. Ramanathan, Energy Fuels 28, 2598 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Tetrahedron Lett. 50, 5248 (2009)CrossRefGoogle Scholar
  17. 17.
    C.A. Antonyraj, S. Kannan, Appl. Catal. Gen. 338, 121 (2008)CrossRefGoogle Scholar
  18. 18.
    M.P. Pachamuthu, V.V. Srinivasan, R. Maheswari, K. Shanthi, A. Ramanathan, Appl. Catal. Gen. 462–463, 143 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Ramanathan, H. Zhu, R. Maheswari, B. Subramaniam, Chem. Eng. J. (2014). doi: 10.1016/j.cej.2014.11.099 Google Scholar
  20. 20.
    A. Ramanathan, M.C. Castro Villalobos, C. Kwakernaak, S. Telalovic, U. Hanefeld, Chem. Eur. J. 14, 961 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Ramanathan, B. Subramaniam, R. Maheswari, U. Hanefeld, Microporous Mesoporous Mater. 167, 207 (2013)CrossRefGoogle Scholar
  22. 22.
    M.P. Pachamuthu, V.V. Srinivasan, R. Maheswari, K. Shanthi, A. Ramanathan, Appl. Catal. Gen. 462–463, 143 (2013)CrossRefGoogle Scholar
  23. 23.
    M.S. Morey, G.D. Stucky, S. Schwarz, M. Froba, J. Phys. Chem. B 103, 2037 (1999)CrossRefGoogle Scholar
  24. 24.
    B.L. Newalkar, J. Olanrewaju, S. Komarneni, J. Phys. Chem. B 105, 8356 (2001)CrossRefGoogle Scholar
  25. 25.
    Q. Pan, A. Ramanathan, W.K. Snavely, R.V. Chaudhari, B. Subramaniam, Ind. Eng. Chem. Res. 52, 15481 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Koukabi, E. Kolvari, A. Khazaei, M.A. Zolfigol, B. Shirmardi-Shaghasemi, H.R. Khavasi, Chem. Commun. 47, 9230 (2011)CrossRefGoogle Scholar
  27. 27.
    P.P. Ghosh, S. Paul, A.R. Das, Tetrahedron Lett. 54, 138 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Heydari, S. Khaksar, M. Tajbakhsh, H.R. Bijanzadeh, J. Fluor. Chem. 130, 609 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rajamanickam Maheswari
    • 1
  • Vinju Vasudevan Srinivasan
    • 1
  • Anand Ramanathan
    • 2
  • Muthusamy P. Pachamuthu
    • 1
  • Rajamanickam Rajalakshmi
    • 1
  • Gaffar Imran
    • 1
  1. 1.Department of ChemistryAnna UniversityChennaiIndia
  2. 2.Center for Environmentally Beneficial CatalysisThe University of KansasLawrenceUSA

Personalised recommendations