Journal of Porous Materials

, Volume 23, Issue 1, pp 57–65 | Cite as

Unique characteristics of MnOx-incorporated mesoporous silicate, Mn-FDU-5, prepared via evaporation induced self assembly

  • Gaffar Imran
  • Vinju Vasudevan Srinivasan
  • Rajamanickam Maheswari
  • Anand Ramanathan
  • Bala Subramaniam
Article

Abstract

Mn containing 3D mesostructured FDU-5 (Ia3d) silicates with varying Si/Mn ratios were synthesized for the first time via evaporation induced self assembly (EISA) technique under acidic conditions at room temperature, employing Pl23 triblock copolymer as a structure directing agent. This method facilitates complete incorporation of higher amounts of Mn in the framework and extraframework locations of FDU-5 even under highly acidic synthesis conditions. The Mn-FDU-5 samples possessed surface areas of 300–500 m2/g, pore volumes of 0.42–0.55 cm3/g and narrow pore size distributions of 4.1–4.9 nm. Homogeneous dispersion of Mn species and aggregated Mn oxide clusters were evidenced from FIB-SEM micrographs. Complementary analytical techniques such as diffuse reflectance UV–Vis, FTIR, TPR and EPR analyses provide insights into the nature of the different types of Mn species (Mn2+, Mn3+ and Mn3O4 nanoparticles) that co-exist in FDU-5. The Mn-FDU-5 material is shown to be active for the epoxidation of trans-stilbene (TS, ~60 % conversion) to trans-stilbene epoxide (~64 % selectivity) with TBHP as oxidant. Although the activity of Mn-FDU-5 (~45 % TS conversion) is similar to those observed with MCM-41 and MCM-48 supports containing similar amounts of Mn (1 wt%), higher epoxide selectivity (~64 %) was observed with Mn-FDU-5. The mixed oxidation states of Mn (Mn2+, Mn3+) along with the extraframework Mn3O4 are found to be beneficial in catalyzing TS epoxidation.

Keywords

Manganese FDU-5 Epoxidation trans-Stilbene 

Notes

Acknowledgments

I. G is thankful for a research fellowship from UGC No. F.40-8(C/M)/2009(SA-III/MANF). Financial Assistance from University Grants Commission, New Delhi [F. No. 39-730/2010 (SR)] is also acknowledged. The authors also acknowledge Dr. Sridevi, Chemical Physics laboratory, CLRI for helping with EPR analysis and Dr. R. M and I. G thank DST (FIST), UGC (SAP) Department of chemistry for providing laboratory facilities at Anna University.

Supplementary material

10934_2015_55_MOESM1_ESM.docx (156 kb)
Supplementary material 1 (DOCX 156 kb)

References

  1. 1.
    N. Novak Tušar, S. Jank, R. Gläser, ChemCatChem 3, 254 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Ramanathan, T. Archipov, R. Maheswari, U. Hanefeld, E. Roduner, R. Gläser, J. Phys. Chem. C 112, 7468 (2008)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, Y. Wang, S. Itsuki, T. Shishido, K. Takehira, J. Mol. Catal. Chem. 188, 189 (2002)CrossRefGoogle Scholar
  4. 4.
    N.D. Wasalathanthri, A.S. Poyraz, S. Biswas, Y. Meng, C.-H. Kuo, D.A. Kriz, S.L. Suib, J. Phys. Chem. C 119, 1473 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Trong On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Appl. Catal. A 222, 299 (2001)CrossRefGoogle Scholar
  6. 6.
    C. Perego, R. Millini, Chem. Soc. Rev. 42, 3956 (2013)CrossRefGoogle Scholar
  7. 7.
    T.-H. Liou, Chem. Eng. J. 171, 1458 (2011)CrossRefGoogle Scholar
  8. 8.
    H.I. Lee, J.H. Kim, G.D. Stucky, Y. Shi, C. Pak, J.M. Kim, J. Mater. Chem. 20, 8483 (2010)CrossRefGoogle Scholar
  9. 9.
    N.N. Tušar, N.Z. Logar, G. Vlaic, I. Arčon, D. Arčon, N. Daneu, V. Kaučič, Microporous Mesoporous Mater. 82, 129 (2005)CrossRefGoogle Scholar
  10. 10.
    I. Fechete, O. Ersen, F. Garin, L. Lazar, A. Rach, Catal. Sci. Technol. 3, 444 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Selvaraj, T. Lee, J. Phys. Chem. B 110, 21793 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Kumar, D. Nepak, D. Srinivas, Catal. Commun. 37, 36 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Imran, R. Maheswari, Mater. Chem. Phys. 161, 237 (2015)CrossRefGoogle Scholar
  14. 14.
    G.S. Kumar, M. Palanichamy, M. Hartmann, V. Murugesan, Microporous Mesoporous Mater. 112, 53 (2008)CrossRefGoogle Scholar
  15. 15.
    X. Liu, B. Tian, C. Yu, F. Gao, S. Xie, B. Tu, R. Che, L. Peng, D. Zhao, Angew. Chem. Int. Ed. 41, 3876 (2002)CrossRefGoogle Scholar
  16. 16.
    K.M. Parida, S.S. Dash, S. Singha, Appl. Catal. Gen. 351, 59 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Xu, Z. Luan, M. Hartmann, L. Kevan, Chem. Mater. 11, 2928 (1999)CrossRefGoogle Scholar
  18. 18.
    M.P. Pachamuthu, R. Rajalakshmi, R. Maheswari, A. Ramanathan, RSC Adv. 4, 29909 (2014)CrossRefGoogle Scholar
  19. 19.
    M.P. Pachamuthu, K. Shanthi, R. Luque, A. Ramanathan, Green Chem. 15, 2158 (2013)CrossRefGoogle Scholar
  20. 20.
    B.J. Saikia, G. Parthasarathy, N. Sarmah, Bull. Mater. Sci. 31, 775 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Selvaraj, P. Sinha, K. Lee, I. Ahn, A. Pandurangan, T. Lee, Microporous Mesoporous Mater. 78, 139 (2005)CrossRefGoogle Scholar
  22. 22.
    R. Maheswari, R. Anand, G. Imran, J. Porous Mater. 19, 283 (2012)CrossRefGoogle Scholar
  23. 23.
    G. Imran, M.P. Pachamuthu, R. Maheswari, A. Ramanathan, S.S. Basha, J. Porous Mater. 19, 677 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Kumar, D. Nepak, D. Srinivas, Catal. Commun. 37, 36 (2013)CrossRefGoogle Scholar
  25. 25.
    E. Winkler, R.D. Zysler, D. Fiorani, Phys. Rev. B 70, 174406 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Xu, Y.-Q. Deng, X.-M. Zhang, Y. Luo, W. Mao, X.-J. Yang, L. Ouyang, P. Tian, Y.-F. Han, ACS Catal. 4, 4106 (2014)CrossRefGoogle Scholar
  27. 27.
    R. Ghosh, Y.-C. Son, V.D. Makwana, S.L. Suib, J. Catal. 224, 288 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gaffar Imran
    • 1
  • Vinju Vasudevan Srinivasan
    • 1
  • Rajamanickam Maheswari
    • 1
  • Anand Ramanathan
    • 2
  • Bala Subramaniam
    • 2
  1. 1.Department of ChemistryAnna UniversityChennaiIndia
  2. 2.Center for Environmentally Beneficial CatalysisThe University of KansasLawrenceUSA

Personalised recommendations