Journal of Porous Materials

, Volume 22, Issue 1, pp 47–56 | Cite as

Cobalt-doped ZnS-reduced graphene oxide nanocomposite as an advanced photocatalytic material

  • Eric Selorm Agorku
  • Messai Adenew Mamo
  • Bhekie Brilliance Mamba
  • Avinash Chandra Pandey
  • Ajay Kumar Mishra


The removal of toxic organic pollutants from wastewater by graphene-based photocatalysts has dominated recent scientific research. As a result numerous nanomaterials have been studied and used for water remediation. ZnS has been widely studied due to its versatile application in photocatalysis. This study presents the synthesis of Co-doped graphene–ZnS nanocomposite by co-precipitation method. The materials were characterized by X-ray diffraction , Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller surface area analysis. UV/Vis diffuse reflectance spectroscopy was employed to estimate band gap energies. Laboratory experiments with indigo carmine (IC) dye was chosen as a model for organic pollutants and was used to evaluate the photocatalytic performance of Co-doped ZnS–rGO nanocomposite under visible light. The Co-doped ZnS–rGO showed significant visible light induced photocatalytic activity towards the degradation of IC. Highest photocatalytic activity was observed for the 0.3 % Co-doped ZnS–rGO sample (k = 3.1 × 10−2 min−1).


Graphene Cobalt ZnS Indigo carmine Photocatalysis 



This work was supported by the Faculty of Science, University of Johannesburg, South Africa, the National Research Fund of South Africa, and Nanotechnology and Applications Centre, University of Allahabad, Allahabad, India. The authors also wish to thank Mr. A. Sacko and Mr. P. Komane in the Department of Applied Chemistry, University of Johannesburg for their technical support.


  1. 1.
    M.M. Ayad, A.A. El-Nasr, J. Phys. Chem. C114, 14377 (2010)Google Scholar
  2. 2.
    P.C. Vandevivere, R. Bianchi, W. Verstraete, J. Chem. Technol. Biotechnol. 72, 289 (1998)CrossRefGoogle Scholar
  3. 3.
    D. Pak, W. Chang, Water Sci. Technol. 40, 115 (1999)CrossRefGoogle Scholar
  4. 4.
    G. Crini, Bioresour. Technol. 97, 1061 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Chakraborty, M.K. Purkait, S.D. Gupta, S. De, J.K. Basu, Sep. Purif. Technol. 31, 141 (2003)CrossRefGoogle Scholar
  6. 6.
    P.S. Zhong, N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, J. Membr. Sci. 52, 417 (2012)Google Scholar
  7. 7.
    M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Desalination 252, 53 (2010)CrossRefGoogle Scholar
  8. 8.
    E. Ellouze, D. Ellouze, A. Jrad, R.B. Amar, Desalin. Water Treat. 33, 118 (2011)CrossRefGoogle Scholar
  9. 9.
    A.L. Ahmad, S.W. Puasa, M.M.D. Zulkali, Desalination 191, 153 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Neamtu, A. Yediler, I. Siminiceanu, M. Macoveanu, A. Kellrup, Dyes Pigment. 60, 61 (2004)CrossRefGoogle Scholar
  11. 11.
    U. Bali, Dyes Pigment. 60, 187 (2004)CrossRefGoogle Scholar
  12. 12.
    M.S. Siboni, M. Samarghandi, J.-K. Yang, S.-M. Lee, J. Adv. Oxid. Technol. 14, 302 (2011)Google Scholar
  13. 13.
    F. Zhang, A. Yediler, X. Liang, A. Kettrup, Dyes Pigment. 60, 1 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, L. Shao, Chemosphere 89, 190 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Palit, Int. J. Chem. Sci. 10, 27 (2012)Google Scholar
  16. 16.
    N. Kannan, M.M. Sundaram, Dyes Pigment. 51, 25 (2001)CrossRefGoogle Scholar
  17. 17.
    G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat, J. Environ. Manag. 102, 148 (2012)CrossRefGoogle Scholar
  18. 18.
    A.R. Khataee, G. Dehghan, A. Ebadi, M. Zarei, M. Pourhassan, Bioresour. Technol. 101, 2252 (2010)CrossRefGoogle Scholar
  19. 19.
    I. Oller, S. Malato, J.A. Sánchez-Pérez, Sci. Total Environ. 409, 4141 (2011)CrossRefGoogle Scholar
  20. 20.
    C.-H. Wu, J.–M. Chern. Ind. Eng. Chem. Res. 45, 6450 (2006)CrossRefGoogle Scholar
  21. 21.
    S.J. Teichner, J. Porous Mater. 15, 311 (2008)CrossRefGoogle Scholar
  22. 22.
    X. Yang, F. Ma, K. Li, Y. Guo, J. Hu, W. Li, M. Huo, Y. Guo, J. Hazard. Mater. 175, 429 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Choe, S.H. Lee, Y.Y. Chang, K.Y. Hwang, J. Khim, Chemosphere 42, 367 (2001)CrossRefGoogle Scholar
  24. 24.
    I. Matsui, J. Chem. Eng. Jpn. 38, 535 (2005)CrossRefGoogle Scholar
  25. 25.
    Y.W. Jun, J.W. Seo, J.O. Sang, J. Cheon, Coord. Chem. Rev. 249, 1766 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Bhattacharyya, I. Perelshtein, O. Moshe, D.H. Rich, A. Gedanken, Adv. Funct. Mater. 18, 1641 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Dev, S. Chaudhuri, B.N. Dev, Bull. Mater. Sci. 31, 551 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Murugadoss, B. Rajamannan, U. Madhusudhanan, Chalcogenide Lett. 6, 197 (2009)Google Scholar
  29. 29.
    J.H. Choy, H.C. Lee, H. Jung, S.J. Hwang, J. Mater. Chem. 11, 2232 (2001)CrossRefGoogle Scholar
  30. 30.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
  31. 31.
    E.I. Kapinus, T.I. Viktorova, T.A. Khalyavka, Theor. Exp. Chem. 42, 282 (2006)CrossRefGoogle Scholar
  32. 32.
    A. Ishizumia, C.W. Whiteb, Y. Kanemitsu, Physica E 26, 24 (2005)CrossRefGoogle Scholar
  33. 33.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)CrossRefGoogle Scholar
  34. 34.
    M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, J. Phys. Chem. C 114, 6426 (2010)CrossRefGoogle Scholar
  35. 35.
    R. Sahraei, G.M. Aval, A. Baghizadeh, M.L. Rachti, A. Goudarzi, M.H. Majles, Ara. Mater. Lett. 62, 4345 (2008)CrossRefGoogle Scholar
  36. 36.
    S.K. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, M. Gradzielski, Nanoscale Res. Lett. 4, 17 (2009)CrossRefGoogle Scholar
  37. 37.
    K.K. Nanda, S.N. Sarangi, S.N. Shu, Nanostruct. Mater. 10, 1401 (1998)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, ACS Nano 6, 9777 (2012)CrossRefGoogle Scholar
  39. 39.
    Z. Wang, B. Huang, Y. Dai, X. Zhang, X. Qin, J. Wang, Z. Zheng, H. Cheng, Cryst. Eng. Comm. 14, 1687 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Salavati-Niasari, M. Randjbar, D. Ghanbari, J. Nanostruct. 1, 231 (2012)Google Scholar
  41. 41.
    G.K. Ramesha, S. Sampath, J. Phys. Chem. C 113, 7985 (2009)CrossRefGoogle Scholar
  42. 42.
    E. Yoo, T. Okata, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 9, 2255 (2009)CrossRefGoogle Scholar
  43. 43.
    B. Barman, K.C. Sarma, Chalcogenide Lett. 8, 171 (2011)Google Scholar
  44. 44.
    B.S.R. Devi, R. Raveendran, A.V. Vaidyan, Pramana-J. Phys. 68, 679 (2007)CrossRefGoogle Scholar
  45. 45.
    C. Bia, L. Pan, M. Xu, J. Yin, L. Qin, J. Liu, H. Zhu, J.Q. Xiao, Mater. Chem. Phys. 116, 363 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eric Selorm Agorku
    • 1
  • Messai Adenew Mamo
    • 1
  • Bhekie Brilliance Mamba
    • 2
  • Avinash Chandra Pandey
    • 3
  • Ajay Kumar Mishra
    • 1
  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Nanotechnology for Water Sustainability Research Unit, College of Engineering, Science and TechnologyUniversity of South AfricaJohannesburgSouth Africa
  3. 3.Nanotechnology Application CentreUniversity of AllahabadAllahabadIndia

Personalised recommendations