Advertisement

Journal of Porous Materials

, Volume 20, Issue 4, pp 799–807 | Cite as

Development of ciprofloxacin hydrochloride loaded poly(ethylene glycol)/chitosan scaffold as wound dressing

  • Mukty Sinha
  • Rathindra M. BanikEmail author
  • Chandana Haldar
  • Pralay Maiti
Article

Abstract

A novel ciprofloxacin hydrochloride loaded chitosan/poly(ethylene glycol) (PEG) composite scaffold was developed for wound dressing application. PEG incorporation in chitosan scaffold showed enhanced loading up to 5.4 % and increased cumulative release of the drug up to 35 % as compared to pure chitosan scaffold (20 %). The drug loading and control release of the drug has been explained by the morphological features and drug–polymer/polymer–polymer interactions revealed by SEM, FTIR and DSC. Bacterial growth inhibition evaluation using Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus confirmed the efficacy of released drug from the scaffolds (pure and PEG mixed chitosan). Swelling study, bacterial penetration, moisture vapour transmission rate, haematocompatibility and biodegradation profile supported the suitability of scaffold used as wound dressing materials. In-vivo study on mice finally validated the controlled rate of drug release showing the effectiveness of PEG incorporation into the scaffold for quicker and regulated wound healing.

Keywords

Chitosan Poly(ethylene glycol) Wound dressing Biodegradable polymers Wound-healing 

Notes

Acknowledgments

The authors would like to thank the University Grant Commission, India for the financial support to carry out the work. The authors also wish to thank UGC-DAE-CSR, Indore for SEM, DSC and XRD measurements. Also, thanks to Mr. Sameer Gupta, SRF, Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi for helping in in vivo studies.

Supplementary material

10934_2012_9655_MOESM1_ESM.tif (53 kb)
Supplementary material 1 (TIFF 52 kb)
10934_2012_9655_MOESM2_ESM.tif (1.1 mb)
Supplementary material 2 (TIFF 1136 kb)

References

  1. 1.
    F.L. Mi, S.S. Shyu, Y.B. Wu, S.T. Lee, J.Y. Shyong, R.N. Huang, Biomaterials 22, 165 (2001)CrossRefGoogle Scholar
  2. 2.
    L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)CrossRefGoogle Scholar
  3. 3.
    A.S. Hoffman, Adv. Drug. Deliver. Rev. 54, 3 (2002)CrossRefGoogle Scholar
  4. 4.
    R.C. Nagarwal, P.N. Singh, S. Kant, P. Maiti, J.K. Pandit, J. Control. Rel. 136, 2 (2009)CrossRefGoogle Scholar
  5. 5.
    J.H. Sung, M.R. Hwang, J.O. Kim, J.H. Lee, Y.I. Kim, J.H. Kim, S.W. Chang, S.G. Jin, J.A. Kim, W.S. Lyoo, S.S. Han, S.K. Ku, C.S. Yong, H.-G. Choi, Int. J. Pharm. 392, 232 (2010)CrossRefGoogle Scholar
  6. 6.
    C.M. Shih, Y.T. Shieh, Y.K. Twu, Carbohyd. Polym. 78, 169 (2009)CrossRefGoogle Scholar
  7. 7.
    S.K. Pandey, R.M. Banik, Bioresour. Technol. 102, 4226 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Laurienzoa, M. Malinconico, A. Motta, A. Vicinanz, Carbohyd. Polym. 62, 274 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Sionkowska, Polym. Degrad. Stabil. 91, 305 (2006)CrossRefGoogle Scholar
  10. 10.
    K. Madhumathi, P.T.S. Kumar, S. Abilash, V. Sreeja, H. Tamura, K. Manzoor, J. Mater. Sci. Mater. M 21, 807 (2010)CrossRefGoogle Scholar
  11. 11.
    K.G. Naber, B. Bergman, M.C. Bishop, Eur. Urol. 40, 576 (2001)CrossRefGoogle Scholar
  12. 12.
    B. Yang, X.Y. Li, S. Shi, X. Kong, G. Guo, M. Huang, F. Luo, Y. Wei, X. Zhao, Carbohyd. Polym. 80, 860 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Sinha, P. Maiti, R.M. Banik, Int. J. Res. 2, 72 (2011)Google Scholar
  14. 14.
    K. Kwangsok, K.L. Yen, C. Chang, D. Fang, B.S. Hsiao, B. Chu, M. Hadjiargyrou, J. Control. Rel. 98, 47 (2004)CrossRefGoogle Scholar
  15. 15.
    F. Chen, Z. Shi, K.G. Neoh, E.T. Kang, Biotechnol. Bioeng. 104, 30 (2009)CrossRefGoogle Scholar
  16. 16.
    S.L. Tomic, M.M. Mic, S.N. Dobic, J.M. Filipovic, E.H. Suljovrujic, Radiat. Phys. Chem. 79, 643 (2010)CrossRefGoogle Scholar
  17. 17.
    R.K. Dey, A.R. Ray, Biomaterials 24, 2985 (2003)CrossRefGoogle Scholar
  18. 18.
    M. Burkatovskaya, G.P. Tegos, E. Swietlik, T.N. Demidova, A.P. Castano, M.R. Hamblin, Biomaterials 27, 4157 (2006)CrossRefGoogle Scholar
  19. 19.
    B.M. Min, Y. You, J.M. Kim, S.J. Lee, W.H. Park, Carbohyd. Polym. 57, 285 (2004)CrossRefGoogle Scholar
  20. 20.
    F.G. Pearson, R.H. Marchessault, C.Y. Liang, J. Polym. Sci. 43, 101 (1960)CrossRefGoogle Scholar
  21. 21.
    M.M. Coleman, P.C. Painter, Prog. Polym. Sci. 20, 1 (1995)CrossRefGoogle Scholar
  22. 22.
    R. Jayakumar, R.L. Reis, J.F. Mano, J. Macromol. Sci., Pure Appl. Chem. A44, 271 (2007)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, J. Zhang, A. Wang, Carbohyd. Polym. 78, 731 (2009)CrossRefGoogle Scholar
  24. 24.
    H. Zhang, S.H. Neau, Biomaterials 22, 1653 (2001)CrossRefGoogle Scholar
  25. 25.
    M.L. Zhang, X.H. Gong, Y.D. Zhao, N.M. Zhang, Biomaterials 23, 2641 (2002)CrossRefGoogle Scholar
  26. 26.
    P. Wu, E.A. Nelson, W.H. Reid, C.V. Ruckley, J.D.S. Gaylor, Biomaterials 17, 1373 (1996)CrossRefGoogle Scholar
  27. 27.
    D. Shim, D.S. Wechsler, T.R. Lloyd, R.H. Beekman, Cardiovasc. Diagn. 39, 287 (1996)CrossRefGoogle Scholar
  28. 28.
    A. Song, A.A. Rane, K.L. Christman, Acta Biomater. 8, 41 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mukty Sinha
    • 1
  • Rathindra M. Banik
    • 1
    Email author
  • Chandana Haldar
    • 2
  • Pralay Maiti
    • 3
  1. 1.School of Biochemical Engineering, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Zoology, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  3. 3.School of Material Science and Technology, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations