Advertisement

Journal of Porous Materials

, Volume 20, Issue 1, pp 219–226 | Cite as

Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique

  • J. H. Lee
  • H. J. Choi
  • S. Y. Yoon
  • B. K. Kim
  • H. C. Park
Article

Abstract

The objective of this study was to prepare highly porous mullite ceramics with relatively large-sized pores and improved compressive strength using a freeze/gel casting route combined with polymer sponge for recycling of coal fly ash into high value-added ceramics. In this work, a tertiary-butyl alcohol /coal fly ash slurry system with an appropriate addition of Al2O3 was used. A reticulated structure with large pore size of 220–300 μm, which formed on burnout of polyurethane was obtained; then, the skeletons consisted mainly of more dense crystalline phases together with a few fine pores (<3 μm). The rod-shaped mullite crystals with an aspect ratio of >3.7 (~4 μm in diameter) seen to have grown within the silicate melts existed. The compressive strength of the sintered porous materials increased in the reverse order of the degree of porosity, i.e. low porosity gave a high compressive strength. The porous materials with an average porosity of 61.6 %, sintered at 1600 °C with 70 wt.% solid loading showed the maximum average compressive strength (~45 MPa).

Keywords

Coal fly ash Tertiary butyl alcohol Freeze-gel casting/polymer sponge Porous Mullite ceramics 

Notes

Acknowledgment

“This work was supported by a 2-Year Research Grant of Pusan National University”.

References

  1. 1.
    H. Schneider, H. Okada, J. Pask, Mullite and Mullite Ceramics (Wiley, Chichester, 1994)Google Scholar
  2. 2.
    A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 1771 (2006)CrossRefGoogle Scholar
  3. 3.
    M.J. Matos, S. Dias, F.A. Costa Oliveira, Adv. Appl. Ceram. 106, 209 (2007)CrossRefGoogle Scholar
  4. 4.
    I.K. Jun, J.H. Song, W.Y. Choi, Y.H. Koh, H.E. Kim, J. Am. Ceram. Soc. 90, 2703 (2007)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, M. Zhang, J. Biomed. Mater. Res. 61, 1 (2002)CrossRefGoogle Scholar
  6. 6.
    I.F. Hu, C.A. Wang, Ceram. Inter. 36, 1697 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Gu, X. Liu, G. Meng, D. Peng, Ceram. Inter. 25, 705 (1999)CrossRefGoogle Scholar
  8. 8.
    G. Meng, H. Wang, W. Zheng, X. Liu, Mater. Lett. 45, 224 (2000)CrossRefGoogle Scholar
  9. 9.
    H. Xu, H. Du, J. Liu, A. Guo, Chem. Eng. J. 173, 251 (2011)Google Scholar
  10. 10.
    R. Chen, Y. Huang, C.A. Wang, J. Qi, J. Am. Ceram. Soc. 90, 3424 (2007)CrossRefGoogle Scholar
  11. 11.
    K.H. Zuo, Y.P. Zeng, D. Jiang, Int. J. Appl. Ceram. Technol. 5, 198 (2008)CrossRefGoogle Scholar
  12. 12.
    T. Fukasawa, M. Ando, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 84, 230 (2001)CrossRefGoogle Scholar
  13. 13.
    T. Montz, H.J. Richter, J. Am. Ceram. Soc. 89, 2392 (2006)Google Scholar
  14. 14.
    Y.H. Koh, J.H. Song, J. Am. Ceram. Soc. 89, 3089 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Macchetta, I.G. Turner, C.R. Bowen, Acta Biomater. 5, 1319 (2009)CrossRefGoogle Scholar
  16. 16.
    R. Chen, Y. Huang, C.A. Wang, J. Qi, J. Am. Ceram. Soc. 90, 3424 (2007)CrossRefGoogle Scholar
  17. 17.
    W.L. Li, K. Lu, J.Y. Walz, Int. Mater. Rev. 57, 37 (2012)CrossRefGoogle Scholar
  18. 18.
    R. Chen, C.A. Wang, Y. Huang, L. Ma, W. Lin, J. Am. Ceram. Soc. 90, 3478 (2007)CrossRefGoogle Scholar
  19. 19.
    J.H. Lee, W.Y. Kim, T.Y. Yang, S.Y. Yoon, B.K. Kim, H.C. Park, Adv. Appl. Ceram. 110, 244 (2011)CrossRefGoogle Scholar
  20. 20.
    T.Y. Yang, J.M. Lee, S.Y. Yoon, H.C. Park, J. Mater. Sci. Mater. Med. 21, 1495 (2010)CrossRefGoogle Scholar
  21. 21.
    T.Y. Yang, H.B. Ji, S.Y. Yoon, B.K. Kim, H.C. Park, Resour. Conserv. Recycl. 54, 816 (2010)CrossRefGoogle Scholar
  22. 22.
    W.G. Fahrenholtz, D.M. Smith, J. Am. Ceram. Soc. 77, 1377 (1994)CrossRefGoogle Scholar
  23. 23.
    K. Li, T. Shimizu, K. Igarashi, J. Am. Ceram. Soc. 84, 497 (2001)CrossRefGoogle Scholar
  24. 24.
    S. Johnson, J.A. Pask, Am. Ceram. Bull. 61, 838 (1982)Google Scholar
  25. 25.
    J.Y. Jaaski, H.U. Nissen, Phys. Chem. Miner. 10, 47 (1983)CrossRefGoogle Scholar
  26. 26.
    K. Li, T. Shimizu, K. Igarashi, J. Am. Ceram. Soc. 84, 497 (2001)CrossRefGoogle Scholar
  27. 27.
    Y.M. Park, T.Y. Yang, S.Y. Yoon, R. Stevens, H.C. Park, Mater. Sci. Eng., A 454(455), 518–522 (2007)Google Scholar
  28. 28.
    B.M. Kim, Y.K. Cho, S.Y. Yoon, R. Stevens, H.C. Park, Ceram. Inter. 35, 579 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. H. Lee
    • 1
  • H. J. Choi
    • 1
  • S. Y. Yoon
    • 1
  • B. K. Kim
    • 2
  • H. C. Park
    • 1
  1. 1.School of Materials Science and EngineeringPusan National UniversityPusanSouth Korea
  2. 2.Department of Polymer Science and EngineeringPusan National UniversityPusanSouth Korea

Personalised recommendations