Journal of Porous Materials

, Volume 20, Issue 1, pp 65–73 | Cite as

Porous modified bentonite as efficient and selective catalyst in the synthesis of 1,5-benzodiazepines

  • Mercedes Muñoz
  • Gabriel Sathicq
  • Gustavo Romanelli
  • Silvina Hernández
  • Carmen I. Cabello
  • Irma L. Botto
  • Mickael Capron
Article

Abstract

The synthesis of 1,5 benzodiazepine using natural and modified Argentinean bentonite (pillared layered clay and porous clay heterostructure) as catalysts through a condensation reaction between o-phenylenediamine (o-PDA) and excess of acetone as reactive and solvent at room temperature is reported. The catalysts were found to be highly active and selective, affording a high yield of the corresponding benzodiazepine. The effects of the modification of the natural bentonite and reaction conditions, such as temperature, time and amount of catalyst were investigated. The catalysts were also successfully employed for the preparation of other derivatives of 1,5-benzodiazepine using substituted o-PDAs and ketones. In all cases, the reactions are highly selective and are completed within 1–3 h. The catalyst showed excellent activity in all cases, showing 86–90% isolated yields of the corresponding derivatives of 1,5-benzodiazepine. The easy work-up procedure and the recyclable catalyst make this methodology attractive for large-scale operations.

Keywords

Bentonite Modified bentonite Catalysis Heterogeneous 1,5-Benzodiazepines 

References

  1. 1.
    Z. Ding, H.Y. Zhu, P.F. Greenfield, J. Colloid Interface Sci. 209, 193–199 (1999)CrossRefGoogle Scholar
  2. 2.
    C. Ooka, H. Yoshida, K. Suzuki, T. Hattori, Appl. Catal. A Gen. 260, 47–53 (2004)CrossRefGoogle Scholar
  3. 3.
    H.Y. Zhu, Z. Ding, J.C. Barry, J. Phys. Chem. B 106, 11420–11429 (2002)CrossRefGoogle Scholar
  4. 4.
    H. Mao, B. Li, X. Li, L. Yue, Z. Liu, M. Wei, Ind. Eng. Chem. Res. 49 583–591 (2010), and references cited hereinGoogle Scholar
  5. 5.
    P. Yuan, H. He, F. Bergaya, D. Wu, Q. Zhou, J. Zhu, Micropor. Mesopor. Mater. 88, 8–15 (2006)CrossRefGoogle Scholar
  6. 6.
    R. Zhu, T. Wang, F. Ge, W. Chen, Z. You, J. Colloid Interface Sci. 335, 77–83 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Zhu, L. Zhu, J. Colloid Surf. Sci. 322, 27–32 (2008)CrossRefGoogle Scholar
  8. 8.
    T. An, J. Chen, G. Li, X. Ding, G. Sheng, J. Fu, B. Mai, K. O’Shea, Catal. Today 139, 69–76 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Elmchaouri, R. Mahboub, Colloids Surf. A 259, 135–141 (2005)CrossRefGoogle Scholar
  10. 10.
    J.Q. Jiang, C. Cooper, S. Ouki, Chemosphere 47, 711–716 (2002)CrossRefGoogle Scholar
  11. 11.
    J. Ma, L. Zhu, J. Hazard. Mater. 136, 982–988 (2006)CrossRefGoogle Scholar
  12. 12.
    K.R. Srinivasan, S.H. Fogler, Clays Clay Miner. 38, 277–286 (1990)CrossRefGoogle Scholar
  13. 13.
    R.S. Varma, K. Pitchumani, K.P. Naicker, Green Chem. 95 (1999) and references cited hereinGoogle Scholar
  14. 14.
    J.K. Landquist, in Comprehensive heterocyclic Chem., eds. by A.R. Katritzky, C.W. Rees (Pergamon, Oxford, 1984), Vol. 1, pp 166–170Google Scholar
  15. 15.
    H. Schutz, Benzodiazepines (Springer, Heidelberg, 1982)CrossRefGoogle Scholar
  16. 16.
    A.M. El-Sayed, A. Khodairy, H. Salah, H. Abdel-Ghany, Phosphorus Sulfur Silicon Relat. Elem. 182, 711–722 (2007)CrossRefGoogle Scholar
  17. 17.
    K. Nabih, A. Baouid, A. Hasnaoui, A. Kenz, Synth. Commun. 34, 3565–3572 (2004)CrossRefGoogle Scholar
  18. 18.
    G.K. Nagaraja, V.P. Vaidya, K.S. Rai, K.M. Mahadevan, Phosphorus Sulfur Silicon Relat. Elem. 181, 2297–2806 (2006)CrossRefGoogle Scholar
  19. 19.
    K.V.V. Reddy, P.S. Rao, D. Ashok, Synth. Commun. 30, 1825–1836 (2000)CrossRefGoogle Scholar
  20. 20.
    C.W. Kuo, C.C. Wang, V. Kavala, C.F. Yao, Molecules 13 2313–2325 (2008) , and references cited hereinGoogle Scholar
  21. 21.
    J.S. Yadav, B.V.S. Reddy, G. Satheesh, G. Srinivasulu, A.C. Kunwar, ARKIVOC III, 221–227 (2005)Google Scholar
  22. 22.
    X.Q. Pan, J.P. Zou, Z. Huang, W. Zhang, Tetrahedron Lett. 49 5302–5308 (2008), and references cited hereinGoogle Scholar
  23. 23.
    J.A.L. Herbert, H. Suschitzky, J. Chem, Soc. Perkin Trans. 1, 2657–2661 (1974)Google Scholar
  24. 24.
    M. Curini, F. Epifano, M.C. Marcotullio, O. Rosati, Tetrahedron Lett. (42) 18 3193–3195 (2001) Corrigendum to Tetrahedron Lett. 42 (2001) 3193–3195 Tetrahedron Lett. (42) 27(2001) 4593Google Scholar
  25. 25.
    S.K. De, R. Gibbs, Tetrahedron Lett. 46, 1811–1813 (2005)CrossRefGoogle Scholar
  26. 26.
    J. Wu, F. Xu, Z. Zhou, Q. Shen, Synth. Commun. 36, 457–464 (2006)CrossRefGoogle Scholar
  27. 27.
    W. Zhong, Y. Zhang, X. Chen, Tetrahedron Lett. 42, 73–75 (2001)CrossRefGoogle Scholar
  28. 28.
    G. Sabitha, K.B. Reddy, M.N. Reddy, J.S. Yadav, Adv. Synth. Catal. 346, 1447–1453 (2004)CrossRefGoogle Scholar
  29. 29.
    R. Varala, R. Enugala, S. Nuvula, S.R. Adapa, Synlett 7, 1009–1014 (2006)Google Scholar
  30. 30.
    M.M. Heravi, V. Zadsirjan, F.K. Behbahani, H.A. Oskooie, J. Mol. Catal. A Chem. 259, 201–204 (2006)CrossRefGoogle Scholar
  31. 31.
    D.I. Jung, T.W. Choi, Y.Y. Kim, I.S. Kim, Y.M. Park, Y.G. Lee, D.H. Jung, Synth. Commun. 29, 1941–1951 (1999)CrossRefGoogle Scholar
  32. 32.
    M. Benjelloum, P. Cool, P. Van Der Voort, E.F. Vansant, Phys. Chem. Chem. Phys. 4 2818–2823 (2002), and references cited hereinGoogle Scholar
  33. 33.
    A. Gil, L.M. Gandia, M.A. Vicente, Catal. Rev. Sci. Eng. 42 145–212 (2000), and references cited hereinGoogle Scholar
  34. 34.
    J.T. Kloprogge, L.V. Duong, R.L. Frost, Environ. Geol. 47, 967–981 (2005)CrossRefGoogle Scholar
  35. 35.
    F. Kooli, P. Cheng Hian, Q. Weirong, S.F. Alshahateet, C. Martin, V. Rives, Clay Science 12 Sup. 2 295–300 (2006), and references cited hereinGoogle Scholar
  36. 36.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–375 (1951)CrossRefGoogle Scholar
  37. 37.
    B.C. Lippens, J.H. de Boer, J. Catal. 4, 319–323 (1965)CrossRefGoogle Scholar
  38. 38.
    W.D. Harkins, G. Jura, J. Am. Chem. Soc. 66, 1366–1373 (1944)CrossRefGoogle Scholar
  39. 39.
    L.J. Gurvitsch, Phys. Chem. Soc. Russ. 47, 805–827 (1915)Google Scholar
  40. 40.
    A. Samoson, E. Lippman, Phys. Rev. B, Condens. Matter 28 (1983) 6567Google Scholar
  41. 41.
    W. Yi, C. Cai, J. Fluor. Chem. 130, 1054–1058 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Galarneau, A.T. Barodawalla, J. Pinnavaia, Nature 374, 529–531 (1995)CrossRefGoogle Scholar
  43. 43.
    R.S. Murray, J.P. Quirk, Langmuir 6, 122–124 (1990)CrossRefGoogle Scholar
  44. 44.
    D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvet, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40, 70 (2002)CrossRefGoogle Scholar
  45. 45.
    R.S.Varma, K. Pitchumani, K.P. Naicker, Green Chem. 1 95 (1999), and references cited hereinGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mercedes Muñoz
    • 1
  • Gabriel Sathicq
    • 1
  • Gustavo Romanelli
    • 1
  • Silvina Hernández
    • 1
  • Carmen I. Cabello
    • 1
  • Irma L. Botto
    • 2
  • Mickael Capron
    • 3
  1. 1.Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA)CCT CONICET La Plata, Universidad Nacional de La Plata (UNLP)La PlataArgentina
  2. 2.Centro de Química Inorgánica (CEQUINOR)-CCT CONICET La PlataUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  3. 3.Unité de Catalyse et chimie du solide (UCCS), UMR-CNRS 8181Université des Sciences et technologies de LilleVilleneuve d’Ascq, CedexFrance

Personalised recommendations