Journal of Porous Materials

, Volume 19, Issue 3, pp 375–381 | Cite as

Comparative study of the texture and structure of aerogel and xerogel sulphated zirconia doped with nickel

  • N. Kamoun
  • M. K. Younes
  • A. Ghorbel
  • A. S. Mamede
  • A. Rives
Article

Abstract

Aerogels and xerogels based on sulphated zirconia doped with nickel in the same atomic ratios S/Zr = 0.5 and Ni/Zr = 0.1 have been synthesized by sol–gel method using two drying ways of the solvent in solid preparation steps. Aerogels obtained by drying in supercritical conditions of solvent stabilize zirconia tetragonal phase even at high calcination temperatures and present a developed surface area, whereas xerogels obtained by ordinary solvent drying in an oven are amorphous. TPR and XPS studies revealed that Ni seems to exist in different species in the two kinds of solids and it is more reducible in aerogels.

Keywords

Xerogel Aerogel Sulphated zirconia Nickel 

References

  1. 1.
    M. Hino, S. Kobayashi, K. Arata, J. Am. Chem. Soc. 101, 5439 (1979)CrossRefGoogle Scholar
  2. 2.
    B.H. Davis, R.A. Keogh, R. Srinivasan, Catal. Today 20, 219 (1994)CrossRefGoogle Scholar
  3. 3.
    X. Song, A. Sayari, Catal. Rev. Sci. Eng. 38, 329 (1996)CrossRefGoogle Scholar
  4. 4.
    J.C. Yori, J.C. Luy, J.M. Parera, Appl. Catal. 46, 103 (1989)CrossRefGoogle Scholar
  5. 5.
    C.Y. Hsu, C.R. Heimbuch, C.T. Armes, B.C. Gates, J. Chem. Soc. Chem. Commun. 22, 1645 (1992). doi: 10.1039/C39920001645 CrossRefGoogle Scholar
  6. 6.
    S.X. Song, D.J. Mcintosh, R.A. Kydd, Catal. Lett. 65, 5 (2000)CrossRefGoogle Scholar
  7. 7.
    K. Ebitani, J. Konishi, H. Hattori, J. Catal. 130, 257 (1991)CrossRefGoogle Scholar
  8. 8.
    I. Mejri, M.K. Younes, A. Ghorbel, P. Eloy, Stud. Surf. Sci. Catal. 162, 953 (2006)CrossRefGoogle Scholar
  9. 9.
    L. Ben Hammouda, A. Ghorbel, F. Figuras, Sol–Gel Sci. Technol. (Paris) 26, 831 (2003)Google Scholar
  10. 10.
    Y. Sun, S. Ma, Y. Du, L. Yuan, S. Wang, J. Yang, F. Deng, F.S. Xiao, J. Phys. Chem. B 109, 2567 (2005)CrossRefGoogle Scholar
  11. 11.
    M.K. Mishra, B. Tyagi, R.V. Jasra, J. Mol. Catal. A. Chem. 223, 61 (2004)CrossRefGoogle Scholar
  12. 12.
    F. Schmidt, Appl. Catal. A. Gen. 221, 15 (2001)CrossRefGoogle Scholar
  13. 13.
    G.A. Martin, B. Imelik, Surf. Sci. 42, 157 (1974)CrossRefGoogle Scholar
  14. 14.
    J.F. Le Page, Catalyse de Contact. (Editions Technip, Paris, 1978), p. 416.Google Scholar
  15. 15.
    M. Perez, H. Armendariz, J.A. Toledo, A. Vazquez, J. Navarrete, A. Montoya, A. Garcia, J. Mol. Catal. A. Chem. 149, 169 (1999)CrossRefGoogle Scholar
  16. 16.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction (Prentice Hall, Englewood Cliffs, 2001)Google Scholar
  17. 17.
    I. Méjri, M.K. Younes, A. Ghorbel, J. Sol–Gel Sci. Technol. 40(1), 3 (2006)Google Scholar
  18. 18.
    R. Srinivasan, D. Taulbee, B.H. Davis, Catal. Lett. 9, 1 (1991)CrossRefGoogle Scholar
  19. 19.
    G. Stefanic, M. Didovic, S. Music, J. Mol. Struct. 834–836, 435 (2007)CrossRefGoogle Scholar
  20. 20.
    IUPAC recommendations, Pure Appl. Chem. 66, 1739 (1994)CrossRefGoogle Scholar
  21. 21.
    F.J. Tzompantzi, M.E. Manriquez, J.M. Padilla, G. Del Angel, R. Gomez Mantilla, A. Catal. Today 133–135, 154 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Morterra, G. Cerrato, M. Signoretto, Catal. Lett. 36, 129 (1996)CrossRefGoogle Scholar
  23. 23.
    T. Yamagushi, K. Tanabe, Y.C. Kung, Mater. Chem. Phys. 16, 67 (1986)CrossRefGoogle Scholar
  24. 24.
    J.M. Parera, Catal. Today. 15, 481 (1992)CrossRefGoogle Scholar
  25. 25.
    M. Signoretto, F. Pinna, G. Strukul, P. Chies, J. Catal. 167, 522 (1997)CrossRefGoogle Scholar
  26. 26.
    F. Babou, G. Coudurier, J.C. Vedrine, J. Catal 152, 341 (1995)CrossRefGoogle Scholar
  27. 27.
    T. Yamaguchi, T. Jin, K. Tanabe, J. Phys. Chem. 90, 3148 (1986)CrossRefGoogle Scholar
  28. 28.
    M.K. Mishra, B. Tyagi, R.V. Jasra, Ind. Eng. Chem. Res. 42(23), 5727 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Bensitel, O. Sauer, J.C. Lavelly, B.A. Morrow, Mater. Chem. Phys. 19, 147 (1988)CrossRefGoogle Scholar
  30. 30.
    S. Chackalackal, F.E. Staffort, J. Am. Chem. Soc. 88, 723 (1966)CrossRefGoogle Scholar
  31. 31.
    C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, Surf. Sci. 218 331 (1989)Google Scholar
  32. 32.
    G. Resofszki, M. Muhler, S. Sprenger, U. Wild, Z. Paál, Appl. Catal. A. Gen. 240, 71 (2003)CrossRefGoogle Scholar
  33. 33.
    K. Pil, K. Younghun, K. Heesoo, S. In Kyu, Y. Jongheop, J. Mol. Catal. A. Chem. 219, 87 (2004)CrossRefGoogle Scholar
  34. 34.
    E. Heracleous, A.F. Lee, K. Wilson, A.A. Lemonidou, J. Catal. 231, 159 (2005)CrossRefGoogle Scholar
  35. 35.
    C.D. Wagner, J.F. Moulder, L.E. Davis, W.M. Riggs, G.E. Muilenburg, Perking-Elmer corporation, Physical Electronics DivisionGoogle Scholar
  36. 36.
    R.V. Siriwardane Jr, J.A. Poston, E.P. Fisher, M.S. Shen, A.L. Miltz, Appl. Surf. Sci. 152, 219 (1999)CrossRefGoogle Scholar
  37. 37.
    Y. Matsumura, T. Nakamori, Appl. Catal. A. Gen. 258, 107 (2004)CrossRefGoogle Scholar
  38. 38.
    X. Bo-Qing, M.H.S. Wolfgang, J. Catal. 167, 224 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • N. Kamoun
    • 1
  • M. K. Younes
    • 1
  • A. Ghorbel
    • 1
  • A. S. Mamede
    • 2
  • A. Rives
    • 3
  1. 1.Laboratoire de Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
  2. 2.Unité de Catalyse et de Chimie du Solide UCCS, Université Lille Nord de France F-59000, CNRS UMR 8181Ecole Nationale Supérieure de Chimie de LilleVilleneuve d’AscqFrance
  3. 3.Unité de Catalyse et de Chimie du Solide UCCS, Université Lille Nord de France F-59000, CNRS UMR 8181Université Lille1Villeneuve d’AscqFrance

Personalised recommendations