Advertisement

Journal of Porous Materials

, Volume 19, Issue 2, pp 189–194 | Cite as

Organic acid catalyzed synthesis of 5-methylresorcinol based organic aerogels in acetonitrile

  • Anna-Liisa Peikolainen
  • Olga Volobujeva
  • Riina Aav
  • Mai Uibu
  • Mihkel Koel
Article

Abstract

A method of preparing 5-methylresorcinol and formaldehyde based organic aerogels in non-aqueous media with a benzoic acid derivative as a catalyst is being proposed in this paper. Here acetonitrile is used as a solvent that allows direct drying with carbon dioxide over the supercritical state without the need for a solvent exchange. The acidic properties of 2,6-dihydroxy-4-methyl benzoic acid promote the reaction of sol–gel polymerization, and at the same time it takes part in the reaction as a co-monomer and influences the nanostructure of the material. The evolution of the polymer was monitored using nuclear magnetic resonance spectroscopy and the structure of the resulting organic aerogels depending on the molar ratio of 5-methylresorcinol to 2,6-dihydroxy-4-methyl benzoic acid was studied by nitrogen adsorption–desorption measurements, scanning electron microscopy and infrared spectrometry.

Keywords

Aerogel Organic aerogel 5-methylresorcinol 2,6-dihydroxy-4-methyl benzoic acid Supercritical drying Oil-shale 

Notes

Acknowledgments

The authors would like to thank Tiiu Kailas for the IR spectroscopy measurements, Kristiina Kreek for preparing many samples for the study, Tõnis Pehk and Marina Kudrjašova for the NMR analysis, and Rein Kuusik for fruitful discussions. The financial support of ETF grant 7303 is gratefully acknowledged.

References

  1. 1.
    A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nagar, J. Hazard. Mater. B122, 161 (2005)CrossRefGoogle Scholar
  2. 2.
    F.J. Maldonado-Hódar, C. Moreno-Castilla, F. Carrasco-Marín, A.F. Pérez-Cadenas, J. Hazard. Mater. 148, 548 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Wu, Z. Sun, R. Fu, J. Appl. Polym. Sci. 99, 2263 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Martínez, L. Martín, E. Molins, M. Moreno-Mañas, A. Roig, Vallribera Monatshefte für Chemie 137, 627 (2006)CrossRefGoogle Scholar
  5. 5.
    F. Pérez-Caballero, A.-L. Peikolainen, M. Uibu, M. Herbert, A. Galindo, F. Montilla, M. Koel, Oil Shale 26, 28 (2009)CrossRefGoogle Scholar
  6. 6.
    C. Moreno-Castilla, F.J. Maldonado-Hódar, Carbon 43, 455 (2005)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, H. Liu, M. Wang, W. Liu, Rare Metals 25, 51 (2006)CrossRefGoogle Scholar
  8. 8.
    S.J. Kim, S.W. Hwang, S.H. Hyun, J. Mater. Sci. 40, 725 (2005)CrossRefGoogle Scholar
  9. 9.
    N. Job, S. Berthon-Fabry, M. Chatenet, J. Marie, M. Brigaudet, J.-P. Pirard, Top. Catal. 52, 2117 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Marie, S. Berthon-Fabry, M. Chatenet, E. Chainet, R. Pirard, N. Cornet, P. Achard, J. Appl. Electrochem. 37, 147 (2007)CrossRefGoogle Scholar
  11. 11.
    J.Torop, J. Leis, M Arulepp, U. Juhanson, A. Aabloo. Estonian Patent EE200800042 (2010)Google Scholar
  12. 12.
    R.W. Pekala. US Patent 4873218 (1989)Google Scholar
  13. 13.
    K. Barral, J. Non-Cryst. Solids 225, 46 (1998)CrossRefGoogle Scholar
  14. 14.
    G.Qin, S. Guo, Carbon 39, 1929 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 19, 6138 (2007)CrossRefGoogle Scholar
  16. 16.
    N. Leventis, N. Chandrasekaran, A.G. Sadekar, S. Mulik, C. Sotiriou-Leventis, J. Mater. Chem. 20, 7456 (2010)CrossRefGoogle Scholar
  17. 17.
    A.W. Francis, J. Phys. Chem. 58, 1099 (1954)CrossRefGoogle Scholar
  18. 18.
    R.J. Willey, A. Radwan, M.E. Vozzella, A. Fataftah, G. Davies, E.A. Ghabbour, J. Non-Cryst. Solids 225, 30 (1998)CrossRefGoogle Scholar
  19. 19.
    F. Pérez-Caballero, A.-L. Peikolainen, M. Koel, M. Herbert, A. Galindo, F. Montilla, Open Petrol. Eng. J. 1, 42 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Brandt, R. Petricevic, H. Pröbstle, J. Fricke, J. Porous Mat. 10, 171 (2003)CrossRefGoogle Scholar
  21. 21.
    D. Fairén-Jiménez, F. Carrasco-Marín, C. Moreno-Castilla, Carbon 44, 2301 (2006)CrossRefGoogle Scholar
  22. 22.
    R.W. Pekala, D.W. Schaefer, Macromolecules 26, 5487 (1993)CrossRefGoogle Scholar
  23. 23.
    H. Tamon, H. Ishizaka, M. Mikami, M. Okazaki, Carbon 35, 791 (1997)CrossRefGoogle Scholar
  24. 24.
    H. Tamon, H. Ishizaka, T. Araki, M. Okazaki, Carbon 36, 1257 (1998)CrossRefGoogle Scholar
  25. 25.
    J. Shen, J. Hou, Y. Guo, H. Xue, G. Wu, B. Zhou, J. Sol-Gel Sci. Techn. 36, 131 (2005)CrossRefGoogle Scholar
  26. 26.
    F. Pérez-Caballero et al., Micropor. Mesopor. Mater. 108, 230 (2008)CrossRefGoogle Scholar
  27. 27.
    I. Poljanšek, U. Šebenik, M. Krajnc, J. Appl. Polym. Sci. 99, 2016 (2006)CrossRefGoogle Scholar
  28. 28.
    K. Siimer, T. Kaljuvee, P. Christjanson, T. Pehk, I. Saks, J. Therm. Anal. Calorim. 91, 365 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anna-Liisa Peikolainen
    • 1
  • Olga Volobujeva
    • 2
  • Riina Aav
    • 1
  • Mai Uibu
    • 3
  • Mihkel Koel
    • 1
  1. 1.Department of ChemistryTallinn University of TechnologyTallinnEstonia
  2. 2.Department of Materials ScienceTallinn University of TechnologyTallinnEstonia
  3. 3.Laboratory of Inorganic MaterialsTallinn University of TechnologyTallinnEstonia

Personalised recommendations