Journal of Porous Materials

, Volume 18, Issue 3, pp 389–397

Zeolite-encapsulated 2-(o-aminophenyl)benzimidazole complexes: synthesis, characterization and catalytic activity

  • B. P. Nethravathi
  • K. N. Mahendra
  • K. Rama Krishna Reddy
Article

Abstract

Cobalt(II), copper(II) and zinc(II) complexes of 2-(o-aminophenyl)benzimidazole (AmPhBzlH) encapsulated in the super cages of zeolite-Y and ZSM-5 have been synthesized and characterized by spectroscopic studies (IR, UV/visible, EPR), elemental analyses, thermal studies and X-ray diffraction patterns. The catalytic activity of encapsulated complexes was investigated for the hydroxylation of phenol using 30% H2O2 as an oxidant. Under optimized reaction conditions, the hydroxylation of phenol yielded catechol and hydroquinone as the major products. All catalysts show good selectivity for diphenol products. A maximum conversion of phenol was obtained with [Cu(AmPhBzlH)]-Y as the catalyst. The results showed that conversion of phenol varies in the order [Cu(AmPhBzlH)]-Y > [Cu(AmPhBzlH)]-ZSM-5 > [Zn(AmPhBzlH)]-Y > [Co(AmPhBzlH)]-Y > [Zn(AmPhBzlH)]-ZSM-5 > [Co(AmPhBzlH)]-ZSM-5 after 6 h of reaction time. Test for the recyclability of the reaction was also carried out and the results indicate their recyclability.

Keywords

Encapsulation Zeolite-Y ZSM-5 Hydrogen peroxide decomposition Oxidation of phenol Catechol and hydroquinone formation 

References

  1. 1.
    M. Salavati-Niasari, S. Shafaie-Arani, M. Reza Ganjali, P. Norouzi, Trans. Metal. Chem. 31, 964 (2006)CrossRefGoogle Scholar
  2. 2.
    C. Ratnasamy, A. Murugkar, S. Padhye, S.A. Pardhy, Indian J. Chem. 35, 1–3 (1996)Google Scholar
  3. 3.
    K.K. Fodor, G.A. Sebastiaan, R.A. Sheldon, Enatiomer 4, 497 (1999)Google Scholar
  4. 4.
    G.J. Hutchings, Chem. Commun. 301 (1999)Google Scholar
  5. 5.
    J.S. Rafelt, J.H. Clark, Catal. Today 57, 3 (2000)CrossRefGoogle Scholar
  6. 6.
    R.A. Sheldon, I.W.C.E. Arends, A. Dijksman, Catal. Today 57, 157 (2000)CrossRefGoogle Scholar
  7. 7.
    R.A. Sheldon, R.A. Vansanten, Catalytic Oxidation: Principles and Applications (World Scientific, Singapore, 1995)Google Scholar
  8. 8.
    R. Raja, P. Ratnasamy, Stud. Surf. Sci. Catal. 101, 181 (1996)CrossRefGoogle Scholar
  9. 9.
    C.R. Jacob, S.P. Varkey, P. Ratnasamy, Microporous Mesoporous Mat. 22, 465 (1998)CrossRefGoogle Scholar
  10. 10.
    S. Seelan, A.K. Sinha, D. Srinivas, S. Sivasanker, Bull. Catal. Soc. India 1, 29 (2002)Google Scholar
  11. 11.
    M.R. Maurya, M. Kumar, S.J.J. Titinchi, H.Sl. Abbo, S. Chand, Catal. Lett. 86, 97 (2003)CrossRefGoogle Scholar
  12. 12.
    B.P. Nethravathi, K.N. Mahendra, J. Porous. Mater. 17, 107 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Taramasso, G. Perego, B. Notari, U.S. Patent 4,410,501 (1983) to sanamprogetti, M. Taramasso, G. Manara, B. Fattore, B. Notari, U.S. Patent 4,666,692 (1987) to sanamprogettiGoogle Scholar
  14. 14.
    Q. Yang, C. Li, S. Yuan, J. Li, P. Ying, Q. Xin, W. Shi, J. Catal. 183, 128 (1999)CrossRefGoogle Scholar
  15. 15.
    D.D. Perrin, W.L.F. Armanego, D.R. Perrin, Purification of Laboratory Chemicals (Pergamon Press, Oxford, 1966)Google Scholar
  16. 16.
    D.W. Hein, R.J. Alheim, J.J. Leavitt, J. Am. Chem. Soc. 79, 427 (1957)CrossRefGoogle Scholar
  17. 17.
    V. Rives, A. Dubey, S. Kannan, Phys. Chem. Chem. Phys. 3, 4826 (2001)CrossRefGoogle Scholar
  18. 18.
    J. Bassett, R.C. Denney, G.H. Jeffery, J. Mendham, Vogel’s Textbook of Quantitative Inorganic Analysis, 4th edn. (Longman Scientific and Technical, London, 1978)Google Scholar
  19. 19.
    C. Subrahmanyam, B. Louis, B. Viswanathan, A. Renken, T.K. Varadarajan, Bull. Catal. Soc. India, 3 (2004)Google Scholar
  20. 20.
    N. Shashikala, E.G. Leelamani, G.K.N. Reddy, Indian J. Chem. 21A, 743 (1982)Google Scholar
  21. 21.
    K.J. Balkus Jr., A.G. Gabrielov, J. Incl. Phenom. Mol. Recogn. Chem. 21, 159 (1995)Google Scholar
  22. 22.
    R. Raja, P. Ratnasamy, J. Catal. 170, 244 (1997)CrossRefGoogle Scholar
  23. 23.
    N. Shashikala, Transition metal complexes with substituted benzimidazoles, Ph.D Thesis, Bangalore University, 1984Google Scholar
  24. 24.
    C. Ratnasamy, A. Murugkar, S. Padhye, S.A. Pardhy, Indian J. Chem. 35, 1 (1996)Google Scholar
  25. 25.
    K. Nakanishi, P.H. Solomon, Infrared Absorption Spectroscopy (Holden- Day Inc., Sydney, 1977)Google Scholar
  26. 26.
    L.J. Bellamy, The Infrared Spectra of Complex Molecules (Wiley, New York, 1962)Google Scholar
  27. 27.
    E.M. Flanigen, Zeolite Chemistry and Catalysis, ACS Monograph, American Chemical Society, Washington DC (1976)Google Scholar
  28. 28.
    P.A. Jacobs, H.K. Beyer, J. Valyon, Zeolites 1, 161 (1981)CrossRefGoogle Scholar
  29. 29.
    G. Krishnamurthy, Reactions of transition metal ions with substituted benzimidazoles and their catalytic activity, Ph.D Thesis, Bangalore University, 2005Google Scholar
  30. 30.
    S. Konstantinovic, C. Radovanovic, Z. Capic, V. Basic, J. Serb. Chem. Soc. 68, 641 (2003)CrossRefGoogle Scholar
  31. 31.
    K. Rama Krishna Reddy, synthesis and characterisation of metal complexes with ligands containing O, N and S donor sites and the study of biological activities of these complexes, Ph. D Thesis, Bangalore University, 2008Google Scholar
  32. 32.
    S.O. Podunavac-Kuzmanovic, L.S. Vojinovic, APTEFF 34, 119 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • B. P. Nethravathi
    • 1
  • K. N. Mahendra
    • 1
  • K. Rama Krishna Reddy
    • 1
  1. 1.Department of Studies in Chemistry, Central College CampusBangalore UniversityBangaloreIndia

Personalised recommendations