Journal of Porous Materials

, Volume 18, Issue 1, pp 89–98 | Cite as

Novel open cell aluminum foams and their use as reactive support for zeolite crystallization

  • S. BargEmail author
  • C. Soltmann
  • A. Schwab
  • D. Koch
  • W. Schwieger
  • G. Grathwohl


Open cell aluminum (Al) foams are developed in this work by a novel direct foaming process in which a low concentrated alkane phase is emulsified in a stabilized Al powder suspension. In this versatile technique, the porosity parameters are adjusted during foaming of the emulsified suspensions and the final stability is achieved by a thermal treatment above the melting temperature of Al. The thin oxide layers surrounding the Al particles and the ascertained percolation of the molten metal are essential in this stage. The efficiency of the processing route is demonstrated with the essential requisites for successful foaming and the final structural stability. Furthermore, open cell Al-foams/zeolite composites exhibiting a hierarchical porous structure (nano- and macroscale) are produced by hydrothermal synthesis of Faujasite-like zeolite on the surface of the developed Al-foams. Due to the advantageous properties of zeolite X in N2 adsorption, the application of the composites for separation of N2 from air is specially envisaged.


Al foams Highly porous materials Zeolite 



The authors would like to thank the AiF for funding parts of this work within the project “Multifunktionelle Keramikschäume 14260 N”. The assistance of Hailing Wang concerning the practical work is also gratefully appreciated. The authors A. Schwab and W. Schwieger also gratefully acknowledge the funding of the German Research Council (DFG), which, within the framework of its ‘Excellence Initiative’ supports the Cluster of Excellence ‘Engineering of Advanced Materials’ ( at the University of Erlangen-Nuremberg.


  1. 1.
    J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559-U3 (2001)CrossRefGoogle Scholar
  2. 2.
    L.-P. Lefebvre, J. Banhart, D.C. Dunand, Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)CrossRefGoogle Scholar
  3. 3.
    J. Banhart, Aluminium foams for lighter vehicles. Int. J. Vehicle. Des. 37(2/3), 114–125 (2005)CrossRefGoogle Scholar
  4. 4.
    J.F. Despois, Y. Conde, C. San Marchi, A. Mortensen, Tensile behavior of replicated aluminium foams. Adv. Eng. Mater. 6(6), 444–447 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Bram, C. Stiller, H.P. Buchkremer, D. Stover, H. Baur, High-porosity titanium, stainless steel, and superalloy parts. Adv. Eng. Mater. 2(4), 196–199 (2000)CrossRefGoogle Scholar
  6. 6.
    B. Jiang, N.Q. Zhao, C.S. Shi, X.W. Du, J.J. Li, H.C. Man, A novel method for making open cell aluminum foams by powder sintering process. Mater. Lett. 59(26), 3333–3336 (2005)CrossRefGoogle Scholar
  7. 7.
    Y.Y. Zhao, D.X. Sun, A novel sintering-dissolution process for manufacturing Al foams. Scripta Mater. 44(1), 105–110 (2001)CrossRefGoogle Scholar
  8. 8.
    S.B. Kulkarni, P. Ramakrishnan, Foamed aluminium. Int. J. Powder Metall. 9(1), 41–45 (1973)Google Scholar
  9. 9.
    J.P. Drolet, Low-density foams produced from aluminium powders. Int. J. Powder Metall. 13(3), 221–225 (1977)Google Scholar
  10. 10.
    S. Barg, C. Soltmann, M. Andrade, D. Koch, G. Grathwohl, Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J. Am. Ceram. Soc. 91(9), 2823–2829 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Barg, E.G. de Moraes, D. Koch, G. Grathwohl, New cellular ceramics from high alkane phase emulsified suspensions (HAPES). J. Eur. Ceram. Soc. 29(12), 2439–2446 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Barg, D. Koch, G. Grathwohl, Processing and properties of graded ceramic filters. J. Am. Ceram. Soc. 92(12), 2854–2860 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Hüppmeier, S. Barg, M. Baune, D. Koch, G. Grathwohl, J. Thöming, Oxygen feed membranes in autothermal steam-reformers—a robust temperature control. Fuel (in press, corrected proof)Google Scholar
  14. 14.
    C.R. Rambo, J. Junkes, H. Sieber, D. Hotza, Biomorphic ceramics as porous supports for zeolite coating. Adv. Sci. Technol. 45, 819–828 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Candamano, P. Frontera, F. Crea, R. Aiello, In situ synthesis of FAU-type zeolite layer on cordierite support. Top. Catal. 30–31(1), 369–373 (2004)CrossRefGoogle Scholar
  16. 16.
    P.C.A. Zampieri, G.T.P. Mabande, T. Selvam, W. Schwieger, F. Scheffler, Zeolite coatings on microcellular ceramic foams: a novel route to microreactor and microseparator devices. Adv. Mater. 16(9–10), 819–823 (2004)CrossRefGoogle Scholar
  17. 17.
    F. Scheffler, R. Herrmann, W. Schwieger, M. Scheffler, Preparation and properties of an electrically heatable aluminium foam/zeolite composite. Microporous Mesoporous Mater. 67, 53–59 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Banhart, Metal foams: production and stability. Adv. Eng. Mater. 8(9), 781–794 (2006)CrossRefGoogle Scholar
  19. 19.
    C. Korner, M. Arnold, R.F. Singer, Metal foam stabilization by oxide network particles. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 396(1–2), 28–40 (2005)Google Scholar
  20. 20.
    G. Kaptay, Interfacial criteria for stabilization of liquid foams by solid particles. Colloids Surf. A Physicochem. Eng. Asp. 230(1–3), 67–80 (2003)CrossRefGoogle Scholar
  21. 21.
    A. Dudka, F. Garcia-Moreno, N. Wanderka, J. Banhart, Structure and distribution of oxides in aluminium foam. Acta Mater. 56(15), 3990–4001 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. Barg
    • 1
    Email author
  • C. Soltmann
    • 1
  • A. Schwab
    • 2
  • D. Koch
    • 1
  • W. Schwieger
    • 2
  • G. Grathwohl
    • 1
  1. 1.Keramische Werkstoffe und BauteileUniversity of BremenBremenGermany
  2. 2.Lehrstuhl für Chemische ReaktionstechnikUniversity of ErlangenErlangenGermany

Personalised recommendations