Advertisement

Journal of Porous Materials

, Volume 17, Issue 2, pp 197–206 | Cite as

Al-doped TiO2 mesoporous materials: synthesis and photodegradation properties

  • Shaoyou LiuEmail author
  • Guocong LiuEmail author
  • Qingge Feng
Article

Abstract

Aluminium-doped TiO2 mesoporous material was successfully fabricated by solid-state reaction with cetyltrimethylammonium bromide as a template agent and tetrabutyl orthotitanate as a precursor. The characteristic results from low-angle and wide-angle X-ray diffraction, high resolution transmission electron microscopy and energy dispersive spectroscopy, N2 absorption–desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet visible light spectroscopy and X-ray photoelectron spectroscopy (XPS) clearly showed that the mesoporous architecture of aluminium-doped TiO2 was composed of crystal wall and micro-/mesopore formed gradually by the mesopore degradation of anatase TiO2, and aluminium had been doped into the framework of anatase TiO2. The mesoporous Al-doped TiO2 material, not only possessed high thermal stability hexahedral mesostructure, large BET surface area and narrow distribution of pore size, but also showed excellent photodegradation behavior for Congo Red. Furthermore the medium UV–Vis absorption peak of mesoporous aluminium-doped TiO2 in the range 210–370 nm was the absorption peak of aluminium oxide nanoparticles locating the extraframework of TiO2. A small quantity of aluminium doped into anatase TiO2 could obviously improve photodegradation activity, and the photodegradation activity of aluminium-doped TiO2 was higher than that of pure TiO2.

Keywords

Aluminium-doped TiO2 Mesoporous Synthesis Solid state reaction Congo Red Photodegradation 

Notes

Acknowledgements

This work was supported by the Natural Science Research Foundation of Education Bureau of Guizhou Province (No. 2007083) and Science and Technology Bureau of Guangxi Province (No. 0728107), China.

References

  1. 1.
    R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Ind. Eng. Chem. Res. 45, 5231 (2006). doi: 10.1021/ie051362o CrossRefGoogle Scholar
  2. 2.
    H.L. Fei, Y.P. Liu, Y.P. Li, P.C. Sun, Z.Y. Yuan, B.H. Li, D.T. Ding, T.H. Chen, Micropor. Mesopor. Mater. 102, 318 (2007). doi: 10.1016/j.micromeso.2007.01.021 CrossRefGoogle Scholar
  3. 3.
    A.D. Paola, E.G. Lopez, S. Ikeda, G. Marci, L. Palmisano, Catal. Today 75, 87 (2002). doi: 10.1016/S0920-5861(02)00048-2 CrossRefGoogle Scholar
  4. 4.
    F. Boccuzzi, A. Chiorino, G. Martra, M. Gargano, N. Ravasio, B. Carrozziniz, J. Catal. 165, 129 (1997). doi: 10.1006/jcat.1997.1475 CrossRefGoogle Scholar
  5. 5.
    D. Huang, Y.J. Wang, L.M. Yang, G.S. Luo, Micropor. Mesopor. Mater. 96, 301 (2006). doi: 10.1016/j.micromeso.2006.06.040 CrossRefGoogle Scholar
  6. 6.
    D.W. Lee, S.J. Park, S.K. Ihm, K.H. Lee, Chem. Mater. 19, 937 (2007). doi: 10.1021/cm062465f CrossRefGoogle Scholar
  7. 7.
    A.J. Nozik, Nature 257, 383 (1975). doi: 10.1038/257383a0 CrossRefGoogle Scholar
  8. 8.
    G. Sivalingam, K. Nagaveni, M.S. Hegde, G. Madras, Appl. Catal. B Environ. 45, 23 (2003). doi: 10.1016/S0926-3373(03)00124-3 CrossRefGoogle Scholar
  9. 9.
    K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Appl. Catal. B Environ. 48, 83 (2004). doi: 10.1016/j.apcatb.2003.09.013 CrossRefGoogle Scholar
  10. 10.
    E. Beyers, P. Cool, E.F. Vansant, J. Phys. Chem. B 109, 10081 (2005). doi: 10.1021/jp050310+ CrossRefGoogle Scholar
  11. 11.
    C. Wang, Z. Zhang, J.Y. Ying, Nanostruct. Mater. 9, 583 (1997). doi: 10.1016/S0965-9773(97)00130-X CrossRefGoogle Scholar
  12. 12.
    X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007). doi: 10.1021/cr0500535 CrossRefGoogle Scholar
  13. 13.
    B. Grzybowska, J. Sloczynski, R. Grabowski, K. Samson, I. Gressel, K. Wcisło, Y. Barbaux, Appl. Catal. A Gen. 230, 1 (2002). doi: 10.1016/S0926-860X(01)00951-6 CrossRefGoogle Scholar
  14. 14.
    D.M. Antonelli, Y.J. Ying, Angew. Chem. Int. Ed. Engl. 34, 2014 (1995). doi: 10.1002/anie.199520141 CrossRefGoogle Scholar
  15. 15.
    T.Y. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, J. Phys. Chem. B 109, 4947 (2005). doi: 10.1021/jp044771r CrossRefGoogle Scholar
  16. 16.
    Y.J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose, Sens. Actuators B Chem. 124, 111 (2007). doi: 10.1016/j.snb.2006.12.005 CrossRefGoogle Scholar
  17. 17.
    G. Ulrich, J. Photochem. Photobiol. A Chem. 139, 243 (2001). doi: 10.1016/S1010-6030(00)00429-9 CrossRefGoogle Scholar
  18. 18.
    J. Rubio, J.L. Oteo, M. Villegas, P. Duran, J. Mater. Sci. 32, 643 (1997). doi: 10.1023/A:1018579500691 CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Z.H. Jiang, F.J. Yang, Mater. Sci. Eng. B 134, 76 (2006). doi: 10.1016/j.mseb.2006.07.026 CrossRefGoogle Scholar
  20. 20.
    F. Toda, Acc. Chem. Res. 12, 480 (1995). doi: 10.1021/ar00060a003 CrossRefGoogle Scholar
  21. 21.
    V.F. Stone, R.J. Davis, Chem. Mater. 10, 1468 (1998). doi: 10.1021/cm980050r CrossRefGoogle Scholar
  22. 22.
    G.J.D. Soler-Illia, C. Sanchez, B. Lebean, J. Patarin, Chem. Rev. 102, 4093 (2002). doi: 10.1021/cr0200062 CrossRefGoogle Scholar
  23. 23.
    S. Pavasupree, J. Jitputti, S. Namsinlapasathian, S. Yoshikawa, Mater. Res. Bull. 43, 149 (2008). doi: 10.1016/j.materresbull.2007.02.028 CrossRefGoogle Scholar
  24. 24.
    C.Z. Li, L.Y. Shi, D.M. Xie, H.L. Du, J. Non-Cryst. Solids 352, 4128 (2006). doi: 10.1016/j.jnoncrysol.2006.06.036 CrossRefGoogle Scholar
  25. 25.
    J.B. Yin, X.P. Zhao, J. Phys. Chem. B 110, 12916 (2006). doi: 10.1021/jp0554588 CrossRefGoogle Scholar
  26. 26.
    W. Li, M. Zhang, J.L. Zhang, Y.C. Han, Front. Chem. China 4, 438 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Blanchard, F. Schuth, P. Trens, M. Hudson, Micropor. Mesopor. Mater. 39, 163 (2000). doi: 10.1016/S1387-1811(00)00192-X CrossRefGoogle Scholar
  28. 28.
    J.G. Yu, J.C. Yu, W.K. Ho, M.K.P. Leung, B. Cheng, G.K. Zhang, X.J. Zhao, Appl. Catal. Gen. 255, 309 (2003). doi: 10.1016/S0926-860X(03)00570-2 CrossRefGoogle Scholar
  29. 29.
    K. Nagaveni, M.S. Hegde, G. Madras, J. Phys. Chem. B 108, 20204 (2004). doi: 10.1021/jp047917v CrossRefGoogle Scholar
  30. 30.
    A.S. Barnard, P. Zapol, L.A. Curtiss, Surf. Sci. 582, 173 (2005). doi: 10.1016/j.susc.2005.03.014 CrossRefGoogle Scholar
  31. 31.
    J.C. Yu, L.Z. Zhang, Z. Zheng, J.C. Zhao, Chem. Mater. 15, 2280 (2003). doi: 10.1021/cm0340781 CrossRefGoogle Scholar
  32. 32.
    F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, J. Cryst. Growth 291, 328 (2006). doi: 10.1016/j.jcrysgro.2006.03.036 CrossRefGoogle Scholar
  33. 33.
    A. Tarafdar, S. Biswas, N.K. Pramanik, P. Pramanik, Micropor. Mesopor. Mater. 89, 204 (2006). doi: 10.1016/j.micromeso.2005.10.027 CrossRefGoogle Scholar
  34. 34.
    K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Langmuir 20, 2900 (2004). doi: 10.1021/la035777v CrossRefGoogle Scholar
  35. 35.
    H.X. Li, J.X. Li, Y.N. Huo, J. Phys. Chem. B 110, 1559 (2006). doi: 10.1021/jp055830j CrossRefGoogle Scholar
  36. 36.
    E.L. Crepaldi, G.J.D.A.A. Soler-IIIia, D. Grosso, F. Cagnol, F. Ribot, J. Am. Chem. Soc. 125, 9770 (2003). doi: 10.1021/ja030070g CrossRefGoogle Scholar
  37. 37.
    I. Hubert Joe, A.K. Vasudevan, G. Aruldhas, A.D. Damodaran, K.G.K. Warrier, J. Solid State Chem. 131, 181 (1997). doi: 10.1006/jssc.1997.7371 CrossRefGoogle Scholar
  38. 38.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994). doi: 10.1021/j100102a038 CrossRefGoogle Scholar
  39. 39.
    Y. Suda, T. Morimoto, Langmuir 3, 786 (1987). doi: 10.1021/la00077a037 CrossRefGoogle Scholar
  40. 40.
    T. Rajh, J.M. Nedeljkovic, L.X. Chen, O. Poluektov, M.C. Thurnauer, J. Phys. Chem. B 103, 3515 (1999). doi: 10.1021/jp9901904 CrossRefGoogle Scholar
  41. 41.
    P.M. Oliver, G.W. Watson, E.T. Kelsey, S.C. Parker, J. Mater. Chem. 7, 563 (1997). doi: 10.1039/a606353e CrossRefGoogle Scholar
  42. 42.
    U. Balachandran, N.G. Eror, J. Solid State Chem. 42, 276 (1982). doi: 10.1016/0022-4596(82)90006-8 CrossRefGoogle Scholar
  43. 43.
    B.M. Reddy, P.M. Sreekanth, E.P. Reddy, Y. Yamada, Q. Xu, T. Kobayashi, J. Phys. Chem. B 106, 5695 (2002). doi: 10.1021/jp014487p CrossRefGoogle Scholar
  44. 44.
    I.E. Wachs, Top. Catal. 8, 57 (1999). doi: 10.1023/A:1019100925300 CrossRefGoogle Scholar
  45. 45.
    V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, B.C. Muddle, Phys. Rev. B 71, 184302/1 (2005)Google Scholar
  46. 46.
    H. Kato, A. Kudo, J. Phys. Chem. B 106, 5029 (2002). doi: 10.1021/jp0255482 CrossRefGoogle Scholar
  47. 47.
    Y.H. Zhang, A. Reller, J. Mater. Chem. 11, 2537 (2001). doi: 10.1039/b103818b CrossRefGoogle Scholar
  48. 48.
    C. Wang, Q. Li, R.D. Wang, J. Mater. Sci. 39, 1899 (2004). doi: 10.1023/B:JMSC.0000016214.06946.f8 CrossRefGoogle Scholar
  49. 49.
    C. Bouvy, W. Marine, B.L. Su, Chem. Phys. Lett. 438, 67 (2007). doi: 10.1016/j.cplett.2007.02.061 CrossRefGoogle Scholar
  50. 50.
    E. Duprey, P. Beaunier, M.A. Springuel-Huet, F.B. Verduraz, J. Fraissard, J.M. Manoli, J.M. Bregeault, J. Catal. 165, 22 (1997). doi: 10.1006/jcat.1997.1462 CrossRefGoogle Scholar
  51. 51.
    B. Notari, Adv. Catal. 41, 253 (1996). doi: 10.1016/S0360-0564(08)60042-5 CrossRefGoogle Scholar
  52. 52.
    Y. Brik, M. Kacimi, B.V. Francois, M. Ziyad, J. Catal. 211, 470 (2002)Google Scholar
  53. 53.
    D. Dvoranova, V. Brezova, M. Mazur, M.A. Malati, Appl. Catal. B Environ. 37, 91 (2002)CrossRefGoogle Scholar
  54. 54.
    A. Zecchina, G. Spoto, S. Bordiga, A. Ferrero, G. Petrini, G. Leofanti, M. Padovan, Stud. Surf. Sci. Catal. 69, 251 (1991). doi: 10.1016/S0167-2991(08)61576-1 CrossRefGoogle Scholar
  55. 55.
    Y. Hwu, Y.D. Yao, N.F. Cheng, C.Y. Tung, H.M. Lin, Nanostruct. Mater. 9, 355 (1997). doi: 10.1016/S0965-9773(97)00082-2 CrossRefGoogle Scholar
  56. 56.
    C.N. Rusu, J.T. Yates, Langmuir 13, 4311 (1997). doi: 10.1021/la9702648 CrossRefGoogle Scholar
  57. 57.
    K.E. Karakitsou, X.E. Verykios, J. Phys. Chem. 97, 1184 (1993). doi: 10.1021/j100108a014 CrossRefGoogle Scholar
  58. 58.
    D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003). doi: 10.1021/jp0273934 CrossRefGoogle Scholar
  59. 59.
    M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995). doi: 10.1021/cr00033a004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina
  2. 2.Department of ChemistryYulin Normal UniversityYulinChina
  3. 3.Institute of Applied ChemistryKaili CollegeKailiChina

Personalised recommendations