Journal of Porous Materials

, 16:635 | Cite as

Photoluminescence and FTIR studies of pure and rare earth doped silica xerogels and aerogels

  • M. N. Muralidharan
  • C. A. Rasmitha
  • R. Ratheesh
Article

Abstract

The luminescence properties of silica xerogels and aerogels have been studied using PL spectroscopy. Both silica xerogels and aerogels exhibit photoluminescence in the visible region when excited with UV radiation. The luminescence observed in xerogels and aerogels is attributed due to defect centers. Silica aerogels exhibit better photoluminescence than xerogels due to the increase in defect sites. The incorporation of rare earth ions (La3+, Nd3+and Sm3+) enhanced the luminescence of both silica xerogels and aerogels. La3+ shows least and Nd3+ shows maximum enhancement. Increase in the concentration of Nd3+ resulted in an increase in the luminescence intensity. The change in the environment of the defect centers due to the incorporation of rare earth ions and the superposition of 4f-f transitions of rare earths are considered as the reasons for the luminescence enhancement.

Keywords

Luminescence Xerogels Aerogels Rare earth 

Notes

Acknowledgments

The authors are thankful to Dr. K.R. Dayas, Director, C-MET, Thrissur for providing facilities to carry out this work. We are also grateful to Dr. K.G. Gopchandran for Luminescence measurements and Mr. P.A. Abraham, Mr. Stanly Jacob and Mr. C. Rajesh for useful discussions.

References

  1. 1.
    R. Reisfeld, T. Saraidarov, Opt. Mater. 28, 64 (2006). doi: 10.1016/j.optmat.2004.11.055 CrossRefGoogle Scholar
  2. 2.
    R. Reisfeld, Opt. Mater. 16, 1 (2001). doi: 10.1016/S0925-3467(00)00052-5 CrossRefGoogle Scholar
  3. 3.
    J. Ouellette, The Industrial Physicist, (Dec.1997), 10Google Scholar
  4. 4.
    M. Bockhorst, K. Heinloth, G.M. Pajonk, R. Begag, E. Elaloui, J. Non-Cryst. Solids 186, 388 (1995). doi: 10.1016/0022-3093(95)00064-X CrossRefGoogle Scholar
  5. 5.
    M. Serwadczak, S. Kucharski, J. Sol-Gel. Sci. Technol. 37, 57 (2006). doi: 10.1007/s10971-005-5156-x CrossRefGoogle Scholar
  6. 6.
    A. Patra, D. Kundu, D. Ganguli, J. Sol-Gel. Sci. Technol. 9, 65 (1997)Google Scholar
  7. 7.
    A. Patra, D. Kundu, D. Ganguli, Mater. Lett. 32, 43 (1997). doi: 10.1016/S0167-577X(97)00005-0 CrossRefGoogle Scholar
  8. 8.
    S. Tamil Selvan, T. Hayakawa, M. Nogami, J. Phys. Chem. B 103, 7064 (1999). doi: 10.1021/jp9902755 Google Scholar
  9. 9.
    D. Mandal, H.D. Banerjee, M.L.N. Goswami, H.N. Acharya, Bull. Mater. Sci. 27(4), 367 (2004). doi: 10.1007/BF02704774 CrossRefGoogle Scholar
  10. 10.
    V. Thomas, G. Jose, G. Jose, P.R. Biju, S. Rajagopal, N.V. Unnikrishnan, J. Sol-Gel. Sci. Technol. 33, 269 (2005). doi: 10.1007/s10971-005-6376-9 CrossRefGoogle Scholar
  11. 11.
    M.R. Ayers, A.J. Hunt, J. Non-Cryst. Solids 217, 229 (1997). doi: 10.1016/S0022-3093(97)00126-9 CrossRefGoogle Scholar
  12. 12.
    W. Cao, Arlon. J. Hunt. Appl. Phys. Lett. 64(18), 2376 (1994). doi: 10.1063/1.111619 CrossRefGoogle Scholar
  13. 13.
    Y.H. Li, C.M. Mo, L.Z. Yao, R.C. Liu, W.L. Cai, X.M. Li et al., J. Phys. Condens. Matter. 10, 1655 (1998). doi: 10.1088/0953-8984/10/7/013 CrossRefGoogle Scholar
  14. 14.
    S.B. Xiong, Z.M. Ye, Z.G. Liu, W.P. Ding, X.Q. Zhang, Y.P. Zhu et al., Mater. Lett. 32, 165 (1997). doi: 10.1016/S0167-577X(97)00028-1 CrossRefGoogle Scholar
  15. 15.
    B.E. Yoldas, J. Mater. Res. 5, 1157 (1990). doi: 10.1557/JMR.1990.1157 CrossRefGoogle Scholar
  16. 16.
    Y. Han, J. Lin, H. Zhang, Mater. Lett. 54, 389 (2002). doi: 10.1016/S0167-577X(01)00599-7 CrossRefGoogle Scholar
  17. 17.
    J. Garcia, M.A. Mondragon, C. Tellez, S.A. Campero, V.M. Castano, Mater. Chem. Phys. 41, 15 (1995). doi: 10.1016/0254-0584(95)01498-5 CrossRefGoogle Scholar
  18. 18.
    W.H. Green, K.P. Le, J. Grey, T.T. Au, M.J. Sailor, Science 276, 1826 (1997). doi: 10.1126/science.276.5320.1826 CrossRefGoogle Scholar
  19. 19.
    U. Damrau, H.C. Marsmann, O. Spormann, P. Wang, J. Non-Cryst. Solids 145, 164 (1992). doi: 10.1016/S0022-3093(05)80449-1 CrossRefGoogle Scholar
  20. 20.
    S. Chakrabarti, J. Sahu, M. Chakraborty, H.N. Acharya, J. Non-Cryst. Solids 180, 96 (1994). doi: 10.1016/0022-3093(94)90403-0 CrossRefGoogle Scholar
  21. 21.
    P. Yang, C.F. Song, M.K. Liu, X. Yin, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 345, 429 (2001). doi: 10.1016/S0009-2614(01)00926-5 CrossRefGoogle Scholar
  22. 22.
    M. Pan, J.-R. Liu, P. Yang, M.-K. Lu, D. Xu, D.-R. Yuan, D.-R. Chen, J. Mater. Sci. Lett. 20, 1565 (2001). doi: 10.1023/A:1017996231315 CrossRefGoogle Scholar
  23. 23.
    Y. Inoue, M. Okamoto, J. Morimoto, J. Mater. Res. 21, 1476 (2006). doi: 10.1557/jmr.2006.0182 CrossRefGoogle Scholar
  24. 24.
    J.C. Pivin, A. Podhorodecki, R. Kudrawiec, J. Misiewicz, G. Lagarde, Opt. Mater. 27, 1467 (2005). doi: 10.1016/j.optmat.2005.01.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. N. Muralidharan
    • 1
  • C. A. Rasmitha
    • 1
  • R. Ratheesh
    • 1
  1. 1.Centre for Materials for Electronics Technology (C-MET), Department of Information TechnologyGovernment of IndiaThrissurIndia

Personalised recommendations