Journal of Porous Materials

, Volume 16, Issue 4, pp 429–437 | Cite as

Synthesis of macroporous silica from solid-stabilised emulsion templates

  • Ibon AranberriEmail author
  • Bernard P. Binks
  • John H. Clint
  • Paul D. I. Fletcher


We have investigated the microstructures of the solid residue left behind after the evaporation of solid-stabilised emulsions. The correlation between the microstructure and the properties and preparation conditions of the emulsions will be thoroughly discussed. The type of microstructure is related to the conditions (oil type, oil content, particle type, particle concentration and emulsion type) of the initial emulsion. Solid residues left after evaporation of oil-in-water emulsions containing volatile oils (relative to water) show a “knobbly” microstructure. When oils with similar or lower vapour pressure to that of water were used, “sponge-like” structures were obtained. For emulsions containing volatile oils, the mean drop diameter is similar to the mean pore diameter, whereas when oils with low vapour pressure are used, the pores are much smaller. Finally, this paper will illustrate that stable toluene-in-water emulsions leave porous microstructures, whereas water-in-toluene emulsions and emulsions close to the phase inversion show sheet-like or “knobbly” structure.


Solid-stable emulsion Nanoparticles Porous Microstructure 



The authors thank Dr. Eric Paterson for many helpful discussions, A. Sinclair (University of Hull) for the SEM measurements on solids and Dow AgroSciences for financial support.


  1. 1.
    J.D. Joannopoulos, P.R. Villeneuve, F. Shanhui, Nature 386, 143 (1997). doi: 10.1038/386143a0 CrossRefGoogle Scholar
  2. 2.
    A. Imhof, D.J. Pine, Nature 389, 948 (1997). doi: 10.1038/40105 CrossRefGoogle Scholar
  3. 3.
    A. Imhof, D.J. Pine. Adv. Mater. 10, 697 (1998). doi:10.1002/(SICI)1521-4095(199806)10:9<697::AID-ADMA697>3.0.CO;2-MCrossRefGoogle Scholar
  4. 4.
    P. Colombo, Philos. Trans. R Soc. A 364, 109 (2006). doi: 10.1098/rsta.2005.1683 CrossRefGoogle Scholar
  5. 5.
    A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. 89(6), 1771 (2006)CrossRefGoogle Scholar
  6. 6.
    B.P. Binks, Adv. Mater. 14(24), 1827 (2002). doi: 10.1002/adma.200290010 CrossRefGoogle Scholar
  7. 7.
    W. Ramsden, Proc. R Soc. 72, 156 (1903). doi: 10.1098/rspl.1903.0034 CrossRefGoogle Scholar
  8. 8.
    S.U. Pickering, J. Chem. Soc. 91, 2001 (1907)Google Scholar
  9. 9.
    P. Finkle, H.D. Draper, J.H. Hildebrand, J. Am. Chem. Soc. 45, 2780 (1923). doi: 10.1021/ja01665a002 CrossRefGoogle Scholar
  10. 10.
    M. Fuji, K. Machida, T. Takei, T. Watanabe, M. Chikazawa, Langmuir 16, 3281 (2000)CrossRefGoogle Scholar
  11. 11.
    B.P. Binks, M. Kirkland, Phys. Chem. Chem. Phys. 4, 3727 (2002). doi: 10.1039/b110031a CrossRefGoogle Scholar
  12. 12.
    B.P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002). doi: 10.1016/S1359-0294(02)00008-0 CrossRefGoogle Scholar
  13. 13.
    J. Salager, in Encyclopedia of Emulsion Technology, vol. 3 ed. by P. Becher (Marcel Decker, New York, 1988), p. 79Google Scholar
  14. 14.
    B.P. Binks, S.O. Lumsdon, Langmuir 16, 8622 (2000). doi: 10.1021/la000189s
  15. 15.
    B.P. Binks, S.O. Lumsdon, Langmuir 16, 2539 (2000). doi: 10.1021/la991081j CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ibon Aranberri
    • 1
    Email author
  • Bernard P. Binks
    • 2
  • John H. Clint
    • 2
  • Paul D. I. Fletcher
    • 2
  1. 1.Institute for Polymer Materials POLYMAT and Grupo de Ingeniería Química, Departamento de Química Aplicada, Facultad de Ciencias QuímicasThe University of the Basque CountryDonostia-San SebastianSpain
  2. 2.Surfactant & Colloid Group, Department of ChemistryUniversity of HullHullUK

Personalised recommendations