Journal of Porous Materials

, Volume 16, Issue 4, pp 393–400

Gelcasting of dense and porous ceramics by using a natural gelatine

  • Mariangela Lombardi
  • Valentina Naglieri
  • Jean-Marc Tulliani
  • Laura Montanaro
Article

Abstract

An improved gel-casting procedure was successfully exploited to produce porous ceramic bodies having controlled porosity features in terms of mean pore size, total pore volume as well as pore geometry. The gel-casting process in which a natural gelatine for food industry is used as gelling agent was firstly set-up to prepare dense alumina and zirconia components. Then, commercial PE spheres, sieved to select proper dimensional ranges, were added to the starting slurries as pore-forming agent. Both alumina and zirconia porous bodies were then produced, having a porosity ranging between 40 and 50 vol%. The fired components were characterised by spherical pores surrounded by highly dense ceramic walls and struts, having a homogeneous and fine microstructure. Their mean pore size was directly dependent on the sieved fraction of the starting PE spheres selected as pore-forming phase.

Keywords

Porous alumina Porous zirconia Gel-casting PE spheres Natural gelatine 

References

  1. 1.
    O.O. Omatete, M.A. Janney, R.A. Strehlow, Am. Ceram. Soc. Bull. 70, 1641 (1991)Google Scholar
  2. 2.
    A.C. Young, O.O. Omatete, M.A. Janney, P.A. Menchhofer, J. Am. Ceram. Soc. 74, 612 (1991). doi:10.1111/j.1151-2916.1991.tb04068.x CrossRefGoogle Scholar
  3. 3.
    I. Santacruz, M.I. Nieto, R. Moreno, Ceram. Int. 31, 439 (2005). doi:10.1016/j.ceramint.2004.06.007 CrossRefGoogle Scholar
  4. 4.
    J. Sun, L. Gao, Ceram. Int. 29, 971 (2003). doi:10.1016/S0272-8842(03)00050-6 CrossRefGoogle Scholar
  5. 5.
    E. Adolfsson, J. Am. Ceram. Soc. 89, 1897 (2006). doi:10.1111/j.1551-2916.2006.01040.x CrossRefGoogle Scholar
  6. 6.
    B. Chen, Z. Zhang, J. Zhang, M. Dong, D. Jiang, Mater. Sci. Eng. A 435436, 198 (2006). doi:10.1016/j.msea.2006.07.028 Google Scholar
  7. 7.
    S. Padilla, M. Vallet-Regì, M.P. Ginebra, F.J. Gil, J. Eur. Ceram. Soc. 25, 375 (2005). doi:10.1016/j.jeurceramsoc.2004.02.017 CrossRefGoogle Scholar
  8. 8.
    W. Zhang, H. Wang, Z. Jin, Mater. Lett. 59, 250 (2005). doi:10.1016/j.matlet.2004.07.059 CrossRefGoogle Scholar
  9. 9.
    Q. Zhang, M. Gu, Mater. Sci. Eng. A 399, 3510 (2005). doi:10.1016/j.msea.2005.04.021 Google Scholar
  10. 10.
    J.K. Park, J.S. Lee, S.I. Lee, J Porous Mater. 9, 203 (2002). doi:10.1023/A:1020939018359 CrossRefGoogle Scholar
  11. 11.
    M.A. Janney, O.O. Omatete, C.A. Walls, S.D. Nunn, R.J. Ogle, G. Westmoreland, J. Am. Ceram. Soc. 81, 581 (1998)Google Scholar
  12. 12.
    E. Gregorovà, W. Pabst, J. Stetina, J. Eur. Ceram. Soc. 26, 1185 (2006). doi:10.1016/j.jeurceramsoc.2005.01.046 CrossRefGoogle Scholar
  13. 13.
    I. Santacruz, C. Baudìn, M.I. Nieto, R. Moreno, J. Eur. Ceram. Soc. 23, 1785 (2003). doi:10.1016/S0955-2219(03)00011-6 CrossRefGoogle Scholar
  14. 14.
    Y. Chen, Z. Xie, J. Yang, Y. Huang, J. Eur. Ceram. Soc. 19, 271 (1999). doi:10.1016/S0955-2219(98)00201-5 CrossRefGoogle Scholar
  15. 15.
    L.J. Vandeperre, A.M. De Wilde, J. Luyten, J. Mater. Process. Technol. 135, 312 (2003). doi:10.1016/S0924-0136(02)00862-2 CrossRefGoogle Scholar
  16. 16.
    F.S. Ortega, F.A.O. Valenzuela, C.H. Scaracchio, V.C. Pandolfelli, J. Eur. Ceram. Soc. 23, 75 (2003). doi:10.1016/S0955-2219(02)00075-4 CrossRefGoogle Scholar
  17. 17.
    S. Dhara, P. Bhargava, J. Am. Ceram. Soc. 84, 3048 (2001)CrossRefGoogle Scholar
  18. 18.
    C.H. Schilling, P. Tomasik, C. Li, M. Sikora, Mater. Sci. Eng. A 336, 219 (2002). doi:10.1016/S0921-5093(01)01959-1 CrossRefGoogle Scholar
  19. 19.
    O. Lyckfeldt, J. Brandt, S. Lesca, J. Eur. Ceram. Soc. 20, 2551 (2000). doi:10.1016/S0955-2219(00)00136-9 CrossRefGoogle Scholar
  20. 20.
    A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 1771 (2006). doi:10.1111/j.1551-2916.2006.01044.x CrossRefGoogle Scholar
  21. 21.
    S. Bhattacharjee, L. Besra, B.P. Singh, J. Eur. Ceram. Soc. 27, 47 (2007). doi:10.1016/j.jeurceramsoc.2006.01.023 CrossRefGoogle Scholar
  22. 22.
    R.L. Menchavez, M. Fuji, H. Takegami, M. Takahashi, Mater. Lett. 61, 754 (2007). doi:10.1016/j.matlet.2006.05.072 CrossRefGoogle Scholar
  23. 23.
    S. Padilla, J. Romàn, M. Vallet, Regi. J. Mater. Sci. Mater. Med. 13, 1193 (2002). doi:10.1023/A:1021162626006 CrossRefGoogle Scholar
  24. 24.
    H.R. Ramay, M. Zhang, Biomaterials 24, 3293 (2003). doi:10.1016/S0142-9612(03)00171-6 CrossRefGoogle Scholar
  25. 25.
    H.T. Wang, X.Q. Liu, G.Y. Meng, Mater. Res. Bull. 32, 1705 (1997). doi:10.1016/S0025-5408(97)00152-9 CrossRefGoogle Scholar
  26. 26.
    Y. Gu, X. Liu, G. Meng, D. Peng, Ceram. Int. 25, 705 (1999). doi:10.1016/S0272-8842(99)00005-X CrossRefGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
    C. Ha, Y. Jung, J. Kim, C. Jo, U. Paik, Mater. Sci. Eng. A 337, 212 (2002). doi:10.1016/S0921-5093(02)00034-5 CrossRefGoogle Scholar
  30. 30.
    G.Y. Onada, E.G. Liniger, Phys. Rev. Lett. 64, 2727 (1990). doi:10.1103/PhysRevLett.64.2727 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mariangela Lombardi
    • 1
  • Valentina Naglieri
    • 1
  • Jean-Marc Tulliani
    • 1
  • Laura Montanaro
    • 1
  1. 1.Department of Materials Science and Chemical Engineering, Politecnico of TorinoINSTM-UdR PoliTO-LINCE Lab.TorinoItaly

Personalised recommendations