Journal of Porous Materials

, Volume 15, Issue 5, pp 559–564 | Cite as

Structural characteristics of modified natural zeolite

  • Annamária Mockovčiaková
  • Marek Matik
  • Zuzana Orolínová
  • Pavol Hudec
  • Erika Kmecová


Natural zeolite of Slovak provenience has been modified with magnetic nanoparticles at selected temperatures of 20, 50 and 85 °C with the aim to enhance its sorption properties. The pore, surface and structural properties of zeolite/iron oxide composite were characterized using nitrogen adsorption measurements, electron probe microanalysis and powder X-ray diffraction. The crystallinity of the host zeolite was strongly influenced by the temperature of iron oxide particles precipitation, but it was still retained. It followed from the nitrogen adsorption measurements that the surface area and the pore volume of zeolite composites have increased in relation to the precipitation temperature, the best sorption properties were revealed at the composite prepared at 85 °C. As followed also from the SEM images, the iron oxide nanoparticles being of size 30 nm are forming mesoporous aggregates adsorbed on the zeolite surface. Fractal analysis used to describe the modified geometry of zeolite composites has given the values of surface fractal dimension between 2.36 and 2.51.


Modification of zeolite Iron oxide nanoparticles Surface and pore structure characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the Slovak VEGA Agency for financial supporting the project G/6189.


  1. 1.
    E. Álvarez-Ayuso, A. García-SÁnchez, X. Querol, Water Res. 37, 4855 (2003)CrossRefGoogle Scholar
  2. 2.
    H.-K. Lee, M.-J. Shim, J.-S. Lee, S.-W. Kim, Mater. Chem. Phys. 44, 79 (1996)Google Scholar
  3. 3.
    G.E. Christidis, D. Moraetis, E. Keheyan, L. Akhalbedashvili, N. Kekelidze, R. Gevorkyan, H. Yeritsyan, H. Sargsyan, Appl. Clay Sci. 24, 79 (2003)CrossRefGoogle Scholar
  4. 4.
    V. Perez Moreno, J.J. Castro Arellano, H. Balmori Ramirez, J. Phys.: Condens. Matter. 16, S2345 (2004)CrossRefGoogle Scholar
  5. 5.
    O. Korkuna, R. Leboda, J. Skubiszewska-Zieba, T. Vrublevska, V.M. Gunko, J. Ryczkowski, Micropor. Mesopor. Mater. 87, 243 (2006)CrossRefGoogle Scholar
  6. 6.
    L.C.A. Oliveira, D.I. Petkowicz, A. Smaniotto, S.B.C. Pergher, Water Res. 38, 3699 (2004)CrossRefGoogle Scholar
  7. 7.
    A.B. Bourlinos, R. Zboril, D. Petridis, Micropor. Mesopor. Mater. 58, 155 (2003)CrossRefGoogle Scholar
  8. 8.
    J.L. García, A. López, F.J. Lázaro, C. Martínez, A. Corma, J. Magnet. Magnetic Mater. 2, 272 (1996)CrossRefGoogle Scholar
  9. 9.
    D. Avnir, D. Farin, New. J. Chem. 16, 439 (1992)Google Scholar
  10. 10.
    P. Pfeifer, M.W. Cole, New. J. Chem. 14, 221 (1990)Google Scholar
  11. 11.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscow, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  12. 12.
    H. Qi, J. Ma, P.-z. Wong, Coll. Surf. 206, 401 (2002)CrossRefGoogle Scholar
  13. 13.
    T. Lopéz, F. Rojas, R. Alexandro-Katz, F. Galindo, A. Balankin, A. Buljan, J. Solid State Chem. 177, 1873 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Esquena, C. Solans, J. Llorens, J. Colloid Interface Sci. 225, 291 (200)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Annamária Mockovčiaková
    • 1
  • Marek Matik
    • 2
  • Zuzana Orolínová
    • 1
  • Pavol Hudec
    • 3
  • Erika Kmecová
    • 1
  1. 1.Institute of Geotechnics of Slovak Academy of SciencesKosiceSlovak Republic
  2. 2.Department of Physical Chemistry, Faculty of SciencesPalacky UniversityOlomoucCzech Republic
  3. 3.Department of Petroleum Technology and Petrochemistry, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislava 1Slovak Republic

Personalised recommendations