Journal of Porous Materials

, Volume 15, Issue 2, pp 237–244 | Cite as

Solid-state synthesis and characterisation of mesoporous zirconia with lamellar and wormhole-like mesostructures

Article

Abstract

Mesostructured zirconia with lamellar and wormhole-like mesostructure was synthesized using a solid-state reaction route. Ordered lamellar mesostructure is achieved at low OH/Zr ratio; while high OH/Zr ratio leads to less ordered wormhole-like mesostructure. The varying synthesis conditions result in different inorganic frameworks with amorphous (in lamellar mesostructure) or tetragonal phase pore walls with different thermal stability. The surface area and pore structure of zirconia prepared by this method can be tailored using simple synthesis parameters such as OH/Zr ratio and crystallization temperature. High surface area up to 716 m2/g can be achieved in the lamellar structured zirconia. However, the wormhole-like structured zirconia possesses high thermal stability. The results strongly suggest that in solid-state synthesis system mesostructure formation still follows the supramolecular self-assembly mechanism. In such synthesis system, the lamellar and reverse hexagonal structure can be transformed at different OH/Zr ratios in order to minimize the surface energy of the mesophases formed.

Keywords

Mesostructure Zirconia Solid-state reaction Synthesis Lamellar and wormhole-like Porosity Supramolecular self-assembly mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Davis, Nature 417, 813 (2002)CrossRefGoogle Scholar
  2. 2.
    T. Yamata, et al. Adv. Mater. 14, 812 (2002)CrossRefGoogle Scholar
  3. 3.
    L. Kavan, J. Rathousky, M. Gratzel, V. Shklover, A. Zukal, Micro. Meso .Mater. 653, 44–45 (2001)Google Scholar
  4. 4.
    R.D. Miller, Science 286, 421 (1999)CrossRefGoogle Scholar
  5. 5.
    U. Ciesla, M. Froba, G. Stucky, F. Schuth, Chem. Mater. 11, 227 (1999)CrossRefGoogle Scholar
  6. 6.
    M.S. Wong, J.Y. Ying, Chem. Mater. 10, 2067 (1998)CrossRefGoogle Scholar
  7. 7.
    J.A. Knowles, M.J. Hudson, J Chem. Soc. Chem. Comm. 20, 2083 (1995)CrossRefGoogle Scholar
  8. 8.
    P. Trens, M.J. Hudson, R.J. Denoyel, Mater. Chem. 8(9), 2147 (1998)CrossRefGoogle Scholar
  9. 9.
    C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, Chem. Commun. 16, 1581 (1997)CrossRefGoogle Scholar
  10. 10.
    B.Z. Tian, X.Y. Liu, B. Tu, C.Z. Yu, J. Fan, L.M. Wang, S.H. Xie, G.D. Stucky, D.Y. Zhao, Nature Mater. 2, 159 (2003)CrossRefGoogle Scholar
  11. 11.
    F. Schuth , U. Ciesla, S. Schacht, M. Thieme, Q. Huo, G. Stucky, Mater. Res. Bull. 34(3), 483 (1999)CrossRefGoogle Scholar
  12. 12.
    G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov, J.J. Fripiat, J. Mater. Chem. 8, 219 (1998)CrossRefGoogle Scholar
  13. 13.
    E. Zhao, O. Hernandez, G. Pacheco, S. Hardcastle, J.J. Fripiat, J. Mater. Chem. 8, 1635 (1998)CrossRefGoogle Scholar
  14. 14.
    P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396(12), 152 (1998)Google Scholar
  15. 15.
    P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11, 2813 (1999)CrossRefGoogle Scholar
  16. 16.
    S.D. Shen, B.Z Tian, C.Z. Yu, S.H. Xie, Z.D. Zhang, B. Tu, D.Y. Zhao, Chem. Mater. 15, 4046 (2003)CrossRefGoogle Scholar
  17. 17.
    J.S. Reddy, A. Sayari, Catal. Lett. 38(3–4), 219 (1996)CrossRefGoogle Scholar
  18. 18.
    J.L. Blin, R. Flamant, B.L. Su, Intern. J. Inorg. Mater. 3, 959 (2001)CrossRefGoogle Scholar
  19. 19.
    G. Larsen, E. Lotero, M. Nabity, L.M. Petkovic, D.S. Shobe, J. Catal. 164, 246 (1996)CrossRefGoogle Scholar
  20. 20.
    X.M. Liu, Z.F. Yan, G.Q. Lu, Chin. Sci. Bull. 49, 975 (2004)CrossRefGoogle Scholar
  21. 21.
    G.G. Siu, M.J. Stoke, Y.L. Liu, Phys. Rev. B 15, 3173 (1999)CrossRefGoogle Scholar
  22. 22.
    R.G. Garvie, J. Phys. Chem. 82, 219 (1978)CrossRefGoogle Scholar
  23. 23.
    A. Chatterjee, S.K. Pradhan, A. Dakka, M. De, D. Chakravorthy, J. Mater. Res. 9, 263 (1996)CrossRefGoogle Scholar
  24. 24.
    C.R. Aita, M.D. Wiggins, R. Whig, C.M. Scanlan, M. Gajdardziska-Josifovska, J. Appl. Phys. 79, 1176 (1994)CrossRefGoogle Scholar
  25. 25.
    P. Holmqvist, P. Alexandridis, B. Lindman, J. Phys. Chem. B 102, 1149 (1998)CrossRefGoogle Scholar
  26. 26.
    T. Hahn (ed.), International tables for crystallography, vol. A, (D. Reidel Publishing Company: Dortrecht, 1983)Google Scholar
  27. 27.
    G.K. Chuah, S. Jaenicke, B.K. Pong, J. Catal. 175, 80 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Laboratory for Heavy Oil Processing, Key Laboratory of Catalysis, CNPCChina University of PetroleumDongyingChina
  2. 2.ARC Centre for Functional Nanomaterials, School of EngineeringUniversity of QueenslandBrisbaneAustralia

Personalised recommendations