Advertisement

Journal of Porous Materials

, Volume 14, Issue 3, pp 279–284 | Cite as

Condensation enthalpies of n-hexane in micelle-templated mesoporous silicas

  • D. Maldonado
  • N. Tanchoux
  • P. Trens
  • A. Galarneau
  • E. Garrone
  • F. Di Renzo
  • F. Fajula
Article

Abstract

The isosteric enthalpies of adsorption of n-hexane on ordered mesoporous silica of pore diameter between 3 and 10 nm have been measured. The heat of capillary condensation increases when mesopores are smaller. Capillary condensation of n-hexane in 3 nm mesopores is 20% more exothermic than the condensation on a flat liquid surface. The results are in good agreement with a model which takes into account the energetic contribution of the interface between the adsorbed layer and the vapour phase.

Keywords

Adsorption Mesopore Condensation Enthalpy Nanoscale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity, 2nd edn. (Academic Press, London, 1982), p. 154Google Scholar
  2. 2.
    R.C. Tolman, J. Chem. Phys. 17, 333 (1949)CrossRefGoogle Scholar
  3. 3.
    W.S. Ahn, M.S. Jhon, H. Park, S. Chang, J. Colloid Interf. Sci. 38, 605 (1972)CrossRefGoogle Scholar
  4. 4.
    F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids (Academic Press, San Diego, 1999), p. 203Google Scholar
  5. 5.
    L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowia, Rep. Prog. Phys. 62, 1573 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Galarneau, D. Desplantier, R. Dutartre, F. Di Renzo, Micropor. Mesopor. Mater. 27, 297 (1999)CrossRefGoogle Scholar
  7. 7.
    M. Kruk, M. Jaroniec, J.M. Kim, R. Ryoo, Langmuir 15, 5279 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Rathousky, A. Zukal, O. Franke, G. Schulz-Ekloff, J. Chem. Soc. Faraday Trans. 91, 937 (1995)CrossRefGoogle Scholar
  9. 9.
    J. Jänchen, H. Stach, M. Busio, J.H.M.C. van Wolput, Thermochim. Acta 312, 33 (1998)CrossRefGoogle Scholar
  10. 10.
    P.L. Llewellyn, F. Schüth, Y. Grillet, F. Rouquerol, J. Rouquerol, K.K. Unger, Langmuir 11, 574 (1995)CrossRefGoogle Scholar
  11. 11.
    A.V. Neimark, P.I. Ravikovitch, M. Grün, F. Schüth, K.K. Unger, J. Colloid Interf. Sci. 207, 159 (1998)CrossRefGoogle Scholar
  12. 12.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  13. 13.
    A. Sayari, Y. Yang, M. Kruk, M. Jaroniec, J. Phys. Chem. B 103, 3651 (1999)CrossRefGoogle Scholar
  14. 14.
    K. Hanna, I. Beurroies, R. Denoyel, D. Desplantier-Giscard, A. Galarneau, F. Di Renzo, J. Colloid Interf. Science 252, 101 (2002)Google Scholar
  15. 15.
    J.C.P. Broekhoff, J.H. de Boer, J. Catal. 9, 15 (1967)CrossRefGoogle Scholar
  16. 16.
    J.C.P. Broekhoff, J.H. de Boer, J. Catal. 10, 377 (1968)CrossRefGoogle Scholar
  17. 17.
    G.A. Somorjai, Introduction to surface chemistry and catalysis (Wiley, New York, 1994), p. 276Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. Maldonado
    • 1
  • N. Tanchoux
    • 1
  • P. Trens
    • 1
  • A. Galarneau
    • 1
  • E. Garrone
    • 2
  • F. Di Renzo
    • 1
  • F. Fajula
    • 1
  1. 1.Laboratoire de Matériaux Catalytique, UMR 5618 CNRSENSCMMontpellier cedex 5France
  2. 2.Dip. Ingegneria Chimica e dei MaterialiPolitecnico di TorinoTorinoItaly

Personalised recommendations