Journal of Porous Materials

, Volume 14, Issue 1, pp 97–101 | Cite as

Synthesis and characterization of zeolite mazzite analogue in Na2O–Al2O3–SiO2–Piperazine–H2O

  • H. Xu
  • P. Dong
  • L. Liu
  • J.-G. Wang
  • F. Deng
  • J.-X. DongEmail author


Zeolite Mazzite (MAZ) analogue was synthesized directly using piperazine as a structure directing agent. The reactive gel composition used was (5.0–7.0) piperazine:(6.0–7.0) Na2O:Al2O3:20.0SiO2:400H2O. Using this composition, the reaction time was shortened greatly to 4 days and the crystallization time was reduced as well. The DTA data showed that piperazine, in as-synthesized zeolite omega decomposed easily. The decomposition of the piperazine occurred at 400–480°C. NH3-TPD analysis proved that zeolite H-omega from piperazine had strong surface acidity with ammonia desorption temperature up to 590°C.


Zeolite mazzite analogue Piperazine Synthesis Characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the National Science Foundation of China (Grants 20373047) and the Science Foundation of Shanxi (20041024) for financial support.


  1. 1.
    C. Baerlocher, W.M. Meier, D.H. Olson, Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2001) p. 180Google Scholar
  2. 2.
    R. Fricke, H. Kosslick, G. Lischke, M. Richter, Chem. Rev. 100, 2343 (2000)CrossRefGoogle Scholar
  3. 3.
    D. McQueen, B.H. Chiche, F. Fajula, A. Auroux, C. Guimon, F. Fitoussi, P. Schulzy, J. Catal. 161, 587 (1996)CrossRefGoogle Scholar
  4. 4.
    S.P. Mirajkar, B.S. Rao, M.J. Eapen, V.P. Shiralkar, J. Phys. Chem. B 105, 4356 (2001)CrossRefGoogle Scholar
  5. 5.
    J.F. Allain, P. Magnoux, P. Schulz, M. Guisnet, Appl. Catal. A: Gen. 152, 221 (1997)CrossRefGoogle Scholar
  6. 6.
    J.F. Cole, H.W. Kouwenhoven, in Molecular Sieve, ed. by W.M. Meier, J.B. Uytterhoeven (American Chemical Society, Washington, DC, 1973), p. 583. Google Scholar
  7. 7.
    A. Martucci, A. Alberti, M.deL. Guzman-Castillo, F.D. Renzo, F. Fajula, Micropor. Mesopor. Mater 63, 33 (2003)CrossRefGoogle Scholar
  8. 8.
    A.M. Goossens, E.J.P. Feijen, G. Verhoeven, B.H. Wouters, P.J. Grobet, P.A. Jacobs, J.A. Martens, Micropor. Mesopor. Mater 35–36, 555 (2000)CrossRefGoogle Scholar
  9. 9.
    H. Ghobarkar, O. Schaf, U. Guth, High Pres. Res. 20, 45 (2001)Google Scholar
  10. 10.
    S.Y. Yang, A.G. Vlessidis, N.P. Evmiridis, Micropor. Mater 9, 273 (1997)CrossRefGoogle Scholar
  11. 11.
    B. De Witte, J. Patarin, J.L. Guth, T. Cholley, Micropor. Mater 10, 247 (1997)CrossRefGoogle Scholar
  12. 12.
    M.K. Rubin, C.J. Plank, E.J. Rosinski, U S Patent 4,021,447(1977)Google Scholar
  13. 13.
    P.S. Halasyamani, S.M. Walker, D. O’Hare, J. Am. Chem. Soc. 121, 7415 (1999)CrossRefGoogle Scholar
  14. 14.
    Y. Ling, G.S. Zhu, J.S. Chen, L.Y. Na, J. Hua, W.Q. Pang, R.R. Xu, Inorg. Chem. 39, 1820 (2000)CrossRefGoogle Scholar
  15. 15.
    Z.C. Liu, L.H. Weng, Y.M. Zhou, Z.X. Chen, D.Y. Zhao, J. Mater. Chem. 13, 308 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • H. Xu
    • 1
    • 2
    • 3
  • P. Dong
    • 2
  • L. Liu
    • 2
  • J.-G. Wang
    • 3
  • F. Deng
    • 4
  • J.-X. Dong
    • 2
    Email author
  1. 1.Graduate School of the Chinese Academy of SciencesBeijing P. R. China
  2. 2.Research Institute of Special ChemicalsTaiyuan University of TechnologyTaiyuanP. R. China
  3. 3.State Key Laboratory of Coal ConversionInstitute of Coal Chemistry, Chinese Academy of SciencesTaiyuanP. R. China
  4. 4.State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanP. R. China

Personalised recommendations