Journal of Porous Materials

, Volume 14, Issue 1, pp 89–96 | Cite as

Aluminum distribution in high-silica mordenite

  • Baowang Lu
  • Takahide Kanai
  • Yasunori Oumi
  • Tsuneji Sano
Article

Abstract

The Al distribution in high-silica mordenite (MOR) zeolites with various Si/Al ratios was investigated by FT-IR spectroscopy in the presence of CD3CN probe molecules and benzene adsorption. Two adsorption bands assigned to CN stretching vibration were observed at 2280–2295 and ≈2315 cm−1, which are due to interaction of CN with acidic hydroxyl groups in the main channels and the side pockets of H-MOR zeolite, respectively. The relative intensity of the peak at 2315 cm−1 increased with an increase in the Si/Al ratio, indicating that the proportion of Al atoms in the main channels relatively decreased with the Si/Al ratio. This was confirmed from the linear relationship between the number of benzene molecules adsorbed in a unit cell and the number of Al atoms in the main channels. In addition, this was also suggested from the computer simulation result that Al atoms are preferentially sitting in the T3 site.

Keywords

Mordenite Main channel Side pocket Al distribution Acetonitrile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Uses, (Wiley, New York, 1974)Google Scholar
  2. 2.
    R.M. Barrer, J. Chem. Soc. 127 (1948)Google Scholar
  3. 3.
    R.M. Barrer, E.A.D. White, J. Chem. Soc. 1261 (1951)Google Scholar
  4. 4.
    O.J. Whittemore Jr., Am. Mineral. 57, 1146 (1972)Google Scholar
  5. 5.
    S. Sakurada, N. Tagaya, T. Maeshima, T. Toyoizumi, T. Numura, T. Hasimoto, Eur. Pat. 0040104 (1981)Google Scholar
  6. 6.
    J. Arika, H. Miyazaki, K. Itabashi, M. Aimoto, Eur. Pat. 0109729 (1984)Google Scholar
  7. 7.
    P.K. Bajpai, Zeolites 6, 2 (1986)CrossRefGoogle Scholar
  8. 8.
    I.E. Maxwell, W.H.J. Stork, in Introduction to Zeolite Science and Practice, ed. by H. von Bekkum, E.M. Flanigen, J.C. Jonsen (Elsevier, Amsterdam, 1991), p. 71Google Scholar
  9. 9.
    L.D. Fernandes, J.L.F. Monteiro, E.F. Sousa-Aguiar, A. Martinez, A. Corma, J. Catal. 177, 363 (1998)CrossRefGoogle Scholar
  10. 10.
    J.E. Gilbert, A. Mosset, Mater. Res. Bull. 33, 997 (1998)CrossRefGoogle Scholar
  11. 11.
    P. Bodart, J.B. Nagy, G. Debras, Z. Gabelica, P.A. Jacobs, J. Phys. Chem. 90, 5183 (1986)CrossRefGoogle Scholar
  12. 12.
    F. Wakabayashi, J. Kondo, A. Wada, K. Domen, C. Hirose, J. Phys. Chem. 97, 10761 (1993)CrossRefGoogle Scholar
  13. 13.
    V.L. Zholobenko, M.A. Makarova, J. Dwyer, J. Phys. Chem. 97, 5962 (1993)CrossRefGoogle Scholar
  14. 14.
    M. Maache, A. Janin, J.C. Lavalley, E. Benazzi, Zeolites 15, 507 (1995)CrossRefGoogle Scholar
  15. 15.
    S. Bordiga, C. Lamberti, F. Geobaldo, A. Zecchina, Langmuir 11, 527 (1995)CrossRefGoogle Scholar
  16. 16.
    J. Datka, B. Gill, A. Kubacka, Zeolites 17, 428 (1996)CrossRefGoogle Scholar
  17. 17.
    A. Alberti, Zeolites 19, 411 (1997)CrossRefGoogle Scholar
  18. 18.
    R. Anquetil, J. Saussey, J.C. Lavalley, Phys. Chem. Chem. Phys. 1, 555 (1999)CrossRefGoogle Scholar
  19. 19.
    O. Marie, F. Thibault-Starzyk, J.C. Lavalley, Phys. Chem. Chem. Phys. 2, 5341 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Kato, K. Itabashi, A. Matsumoto, K. Tsutumi, J. Phys. Chem. B 107, 1788 (2003)CrossRefGoogle Scholar
  21. 21.
    O. Marie, F. Thibault-Starzyk, J. Phys. Chem. B 108, 5073 (2004)CrossRefGoogle Scholar
  22. 22.
    H. Sasaki, Y. Oumi, K. Itabashi, B.-W. Lu, T. Teranishi, T.␣Sano, J. Mater. Chem. 13, 1173 (2003)CrossRefGoogle Scholar
  23. 23.
    B.-W. Lu, T. Tsuda, H. Sasaki, Y. Oumi, K. Itabashi, T. Teranishi, T. Sano, Chem. Mater. 16, 286 (2004)CrossRefGoogle Scholar
  24. 24.
    B.-W. Lu, T. Tsuda, Y. Oumi, K. Itabashi, T. Sano, Micropor. Mesopor. Mater. 76, 1 (2004)CrossRefGoogle Scholar
  25. 25.
    B.-W. Lu, Y. Oumi, K. Itabashi, T. Sano, Micropor. Mesopor. Mater. 81, 365 (2005)CrossRefGoogle Scholar
  26. 26.
    B. Delley, J. Chem. Phys. 92, 508 (1990)CrossRefGoogle Scholar
  27. 27.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)CrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  29. 29.
    JP. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
  30. 30.
    K. Itabashi, T. Fukushima, K. Igawa, Zeolites 6, 30 (1986)CrossRefGoogle Scholar
  31. 31.
    K. Itabashi, T. Okada, K. Igawa, in Proceeding of the 7th International Zeolite Conference, Kodansha, Tokyo, Japan, 1986, ed. by Y. Murakami, A. Iijma, J.W. Ward, p. 369Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Baowang Lu
    • 1
    • 2
  • Takahide Kanai
    • 1
  • Yasunori Oumi
    • 1
  • Tsuneji Sano
    • 1
    • 3
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan
  2. 2.Molecular Catalysis Group, Research Institute for Innovation in Sustainable ChemistryNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
  3. 3.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHiroshimaJapan

Personalised recommendations