Journal of Porous Materials

, Volume 14, Issue 1, pp 49–54 | Cite as

Prediction of the effective diffusion coefficient in random porous media using the finite element method

  • Deqiang Mu
  • Zhong-Sheng Liu
  • Cheng Huang
  • Ned Djilali


A finite-element-based method is presented for evaluating the effective gas diffusion coefficient of porous solids. Using this method, the 3-D micro-scale geometries of the porous solids are constructed under the ANSYS platform by the parametric code; the relation between effective gas diffusivity and micro-scale features of random-distributed porous solids is established. The results show that in random-distributed pore media, there is a percolation threshold εp, and this percolation threshold decreases with increasing coordination number of the pore network. The relationship between the effective diffusivity and porosity is strongly nonlinear when the porosity, ε, is less than a certain value εL; for ε > εL, the relationship becomes quasi-linear. This dividing point εL decreases with increasing coordination number. The larger the coordination number of the pore network, the higher the effective gas diffusivity. Based on the simulation results and observations, a formula relating the effective diffusion coefficient with porosity is proposed.


Effective diffusion coefficient Porous media 3-D pore network Finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.P.S. Andrew, Chem. Eng. Sci. 36, 1431 (1981)CrossRefGoogle Scholar
  2. 2.
    N. Wakao, J.M. Smith, Chem. Eng. Sci. 17, 825 (1962)CrossRefGoogle Scholar
  3. 3.
    S. Litster, G. McLean, J. Power Sources 130, 61 (2004)CrossRefGoogle Scholar
  4. 4.
    B.A. Westrin, A. Axelsson, Biotechnol. Bioeng. 38, 439 (1991)CrossRefGoogle Scholar
  5. 5.
    G.H. Neale, W.K. Nader, AIChE J. 19, 112 (1973)CrossRefGoogle Scholar
  6. 6.
    M.M. Mezedur, M. Kaviany, W. Moore, AIChE J. 48, 15 (2002)CrossRefGoogle Scholar
  7. 7.
    R. Mann, J.J. Almeida, M.N. Mugerwa, Chem. Eng. Sci. 41, 2663 (1986)CrossRefGoogle Scholar
  8. 8.
    M.H. Abbasi, J.W. Evans, I.S. Abramson, AIChE J. 29, 617 (1983)CrossRefGoogle Scholar
  9. 9.
    R.M. Riley, F.J. Muzzio, H. Buettner, S.C. Reyes, AIChE J. 41, 691 (1995)CrossRefGoogle Scholar
  10. 10.
    M. Sahimi, D. Stauffer, Chem. Eng. Sci. 9, 2225 (1991)CrossRefGoogle Scholar
  11. 11.
    M. Sahimi, J. Chem. Phys. 96, 4718 (1992)CrossRefGoogle Scholar
  12. 12.
    S. Trinh, P Arce, B.R. Locke, Transport Porous Med. 38, 241 (2000)CrossRefGoogle Scholar
  13. 13.
    J.A. Currie, Brit. J. Appl. Phys. 11, 314 (1960)CrossRefGoogle Scholar
  14. 14.
    J. Hoogschagen, Ind. Eng. Chem. 47, 906 (1955)CrossRefGoogle Scholar
  15. 15.
    J.H. Kim, J.A. Ochoa, S. Whitaker, Transport Porous Med. 2, 327 (1987)CrossRefGoogle Scholar
  16. 16.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd edn. (Claredon Press, Oxford, 1881)Google Scholar
  17. 17.
    D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935)CrossRefGoogle Scholar
  18. 18.
    H.L. Weissberg, J. Appl. Phys. 34, 297 (1963)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Deqiang Mu
    • 1
  • Zhong-Sheng Liu
    • 1
  • Cheng Huang
    • 1
  • Ned Djilali
    • 2
  1. 1.NRC Institute For Fuel Cell InnovationVancouverCanada
  2. 2.Institute for Integrated Energy SystemsUniversity of VictoriaVictoriaCanada

Personalised recommendations