Journal of Porous Materials

, Volume 13, Issue 3–4, pp 353–357 | Cite as

H-MCM-22 zeolitic catalysts modified by chemical liquid deposition for shape-selective disproportionation of toluene



Catalysts were prepared by dealumination of H-MCM-22 zeolite with oxalic acid leaching, followed by shaping and liquid phase modification with siloxane. The catalytic performance was measured with selective disproportionation of toluene in a fixed-bed reactor. The unmodified H-MCM-22 zeolite exhibited much higher initial activity than H-ZSM-5 with a thermodynamic equilibrium distribution of xylene products. The oxalic acid treatment of H-MCM-22 improved the selectivity for para-xylene by 10–18%. The modification by siloxane of the oxalic acid treated H-MCM-22 turned out to be highly selective for para-xylene, however, with the expense of the conversion. It is proposed that the high para-selectivity was closely associated with the contraction of micropore windows and the elimination of acid sites at the external surface by the deposited silica. Therefore, the modified H-MCM-22 is a potential catalyst for the selective disproportionation of toluene with a high para-selectivity.


MCM-22 Disproportionation of toluene Para-xylene Dealumination Chemical liquid deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.C. Tsai, S.B. Liu, and I. Wang, Appl. Catal. A. 181, 355 (1999).CrossRefGoogle Scholar
  2. 2.
    T.F. Degnan Jr, J. Catal. 216, 32 (2003).CrossRefGoogle Scholar
  3. 3.
    N.Y. Chen, W.W. Kaeding, and F.G. Dwyer, J. Am. Chem. Soc. 101, 6783 (1979).CrossRefGoogle Scholar
  4. 4.
    W.O. Haag and D.H. Olson. USP 4,097, 543 (1978).Google Scholar
  5. 5.
    T. Hibino, M. Niwa, and Y. Murakami, Zeolites 13, 518 (1993).CrossRefGoogle Scholar
  6. 6.
    R.W. Weber, K.P. Möller, and C.T. O'Connor, Microporous Mesoporous Mater. 35–36, 533 (2000).CrossRefGoogle Scholar
  7. 7.
    J.H. Kim, A. Ishida, and M. Okajima, J. Catal. 161, 387 (1996).CrossRefGoogle Scholar
  8. 8.
    R.W. Weber, K.P. Möller, M. Unger, and C.T. O'Connor, Microporous Mesoporous Mater. 23, 179 (1998).CrossRefGoogle Scholar
  9. 9.
    Y. Qin, Y.H. Yue, and Z. Gao, Chem. J. Chinese U. 19, 1479 (1998).Google Scholar
  10. 10.
    M. Niwa, M. Kato, T. Hattori, and Y. Murakami, J. Phys. Chem. 90, 6233 (1986).CrossRefGoogle Scholar
  11. 11.
    Y.H. Yue, Y. Tang, Y. Liu, and Z. Gao. Ind. Eng. Chem. Res. 35, 430 (1996).CrossRefGoogle Scholar
  12. 12.
    M.K. Rubin and P. Chu. US Patent No. 4,954, 325 (1990).Google Scholar
  13. 13.
    M.E. Leonowicz, J.A. Lawton, S.L. Lawton, and M.K. Rubin, Science 264, 1910 (1994).CrossRefGoogle Scholar
  14. 14.
    M.A. Asensi, A. Corma, and A. Martínez, J. Catal 158, 561 (1996).CrossRefGoogle Scholar
  15. 15.
    S.J. Kim, K.D. Jung, and O.S. Joo, J. Porous Mater. 11, 211 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Corma and J. Martínez-Triguero, J. Catal. 165, 102 (1997).CrossRefGoogle Scholar
  17. 17.
    J.C. Cheng, T.F. Degnan, J.S. Beck, Y.Y. Huang, M. Kalyanaraman, J.A. Kowalski, C.A. Loehr, and D.N. Mazzone, Stud. Surf. Sci. Catal. 128, 53 (1999).CrossRefGoogle Scholar
  18. 18.
    A. Corma, M. Davis, V. Fornés, V. González-Alfaro, R. Lobo, and A. V. Orchillés, J. Catal. 167, 438 (1997).CrossRefGoogle Scholar
  19. 19.
    A. Corma, V. Gonzàlez-Alfaro, and A. V. Orchillés, Appl. Catal. A. 129, 203 (1995).CrossRefGoogle Scholar
  20. 20.
    P. Wu, T. Komatsu, and T. Yashima, Microporous Mesoporous Mater. 22, 343 (1998)CrossRefGoogle Scholar
  21. 21.
    N. Kumar and L.E. Lindfors, Appl. Catal. A. 147, 175 (1996).CrossRefGoogle Scholar
  22. 22.
    S. Unverricht, M. Hunger, S. Ernst, H.G. Karge, and J. Weitkamp, Stud. Surf. Sci. Catal. 84, 37 (1994).CrossRefGoogle Scholar
  23. 23.
    S.H. Park and H.K. Rhee, React. Kinet. Catal. Lett. 78, 81 (2003).CrossRefGoogle Scholar
  24. 24.
    V. Mavrodinova and M. Popova, Catal. Commun. 6, 247 (2005).CrossRefGoogle Scholar
  25. 25.
    V. Mavrodinova, M. Popova, M.R. Mihályi, G. Par-borbely, and C. Minchev, React. Kinet. Catal. Lett. 83, 345 (2004).CrossRefGoogle Scholar
  26. 26.
    G.G. Juttu and R.F. Lobo, Microporous Mesoporous Mater. 40, 9 (2000).CrossRefGoogle Scholar
  27. 27.
    Z.R. Zhu, Q.L. Chen, W. Zhu, D.J. Kong, and C. Li, Catal. Today 93–95, 321 (2004).CrossRefGoogle Scholar
  28. 28.
    W.W. kaeding, C. Chu, L.B. Young, and S.A. Butter, J. Catal. 69, 392 (1981).CrossRefGoogle Scholar
  29. 29.
    Y.S. Xiong, P.G. Rodewald, and C.D. Chang, J. Am. Chem. Soc. 117, 9427 (1995).CrossRefGoogle Scholar
  30. 30.
    D. Meloni, D. Martin, and M. Guisnet, Appl. Catal. A 215, 67 (2001).CrossRefGoogle Scholar
  31. 31.
    S. Laforge, D. Martin, J.L. Paillaud, and M. Guisnet, J. Catal. 220, 92 (2003).CrossRefGoogle Scholar
  32. 32.
    S. Laforge, D. Martin, and M. Guisnet, Microporous Mesoporous Mater. 67, 235 (2004).CrossRefGoogle Scholar
  33. 33.
    S. Zheng, H.R. Heydenrych, H.P. Röger, A. Jentys, and J.A. Lercher, Topics Catal. 22, 101 (2003).CrossRefGoogle Scholar
  34. 34.
    R. Giudici, H.W. Kouwenhoven, and R. Prins, Appl. Catal. A. 203, 101 (2000).CrossRefGoogle Scholar
  35. 35.
    P. Ayrault, J. Datka, S. Laforge, D. Martin, and M. Guisnet, J. Phys. Chem. B. 108, 13755 (2004).CrossRefGoogle Scholar
  36. 36.
    B. Anand Halgeri and D. Jagannath, Catal. Today 73, 65 (2002).CrossRefGoogle Scholar
  37. 37.
    J.H. Liang, X.Q. Ren, and J. Wang, Petrochem. Tech. (Chinese) 33-S1, 1010 (2004).Google Scholar
  38. 38.
    S. Zheng, H. Tanaka, A. Jentys, and J.A. Lercher, J. Phys. Chem. B. 108, 1337 (2004).CrossRefGoogle Scholar
  39. 39.
    S. Zheng, H.R. Heydenrych, A. Jentys, and J.A. Lercher, J. Phys. Chem. B. 106, 9552 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Key Laboratory of Materials-Oriented Chemical Engineering of Ministry of Education, College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingP. R. China

Personalised recommendations