Journal of Porous Materials

, Volume 13, Issue 3–4, pp 347–352 | Cite as

Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15

  • Martin HartmannEmail author
  • Carsten Streb


The selective oxidation of hydrocarbons is an important value-enhancing chemical transformation in particular with respect to fine chemicals and pharmaceuticals production. Enzymatic oxidations operate under mild reaction conditions and produce little if any waste. However, its industrial use is still limited mainly due to their high cost and the low space time yields. In the present work, chloroperoxiase from Calariomyces fumago immobilized on the mesoporous molecular sieve SBA-15 was applied for the oxidation of indole to 2-oxoindole using hydrogen peroxide or tert.-butyl hydroperoxide as oxidants. The performance of the immobilized enzyme was found to be superior to native chloroperoxidase with respect to maximum conversion and pH range applicable. However, immobilized CPO is still sensitive to high concentrations of hydrogen peroxide. The use of tert.-buty hydroperoxide is found to avoid this problem, but the reaction rate is significantly reduced.


Chloroperoxidase SBA-15 Oxidation of indole Mesoporous molecular sieve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Morris and L.P. Hager, J. Biol. Chem. 241, 1763 (1966).Google Scholar
  2. 2.
    M.P.J. van Deurzen, F. van Rantwijk, and R.A. Sheldon, Tetrahedron 53, 13183 (1997).CrossRefGoogle Scholar
  3. 3.
    S. Colonna, N. Gaggero, C. Richelmi, and P. Pasta, Trends Biotechnol. 17, 163 (1999).CrossRefGoogle Scholar
  4. 4.
    W. Adam, M. Lazarus, C.R. Saha-Möller, O. Weichold, U. Hoch, D. Häring, and P. Schreier, Adv. Biochem. Eng. Biotechnol. 63, 73 (1999).Google Scholar
  5. 5.
    F. van Rantwijk and R.A. Sheldon, Curr. Opin. Biotechnol. 11, 554 (2000).CrossRefGoogle Scholar
  6. 6.
    R. Vazquez-Duhalt, M. Ayala, and F.J. Marquez-Rocha, Phytochemistry 58, 929 (2001).CrossRefGoogle Scholar
  7. 7.
    S. Colonna, N. Gaggero, L. Casella, G. Carrera, and P. Pasta, Tetrahedron Asymmetry 3, 95 (1992).CrossRefGoogle Scholar
  8. 8.
    L.P. Hager, F.J. Lakner, and A. Basavapathruni, J. Mol. Catal. B: Enzym. 5, 95 (1998).CrossRefGoogle Scholar
  9. 9.
    M.D. Corbett and B.R. Chipko, Biochem. J. 183, 269 (1979).Google Scholar
  10. 10.
    T.A. Kadima and M.A. Pickard, Appl. Environ. Microbiol. 56, 3474 (1990).Google Scholar
  11. 11.
    S. Aoun and M. Baboulene, J. Mol. Catal. B: Enzym. 4, 101 (1998).CrossRefGoogle Scholar
  12. 12.
    Y.J. Han, J.T. Watson, G. D. Stucky, and A. Butler, J. Mol. Catal. B: Enzym. 17, 1 (2002).CrossRefGoogle Scholar
  13. 13.
    M. Bakker, F. van de Velde, F. van Ranwijk, and R.A. Sheldon, Biotechnol. Bioeng. 70, 342 (2000).CrossRefGoogle Scholar
  14. 14.
    A. Petri, T. Gambicorti, and P. Salvadori, J. Mol. Catal. B: Enzym. 27, 103 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Borole, S. Dai, C.L. Cheng, M. Rodriguez, and B.H. Davison, Appl. Biochem. Biotechnol. 273, 113 (2004).Google Scholar
  16. 16.
    V. Trevisan, M. Signoretto, S. Colonna, V. Pironti, and G., Strukul, Angew, Chem. Int. Ed. 43, 4097 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Hartmann and A. Vinu, Langmuir 18, 8010 (2002).CrossRefGoogle Scholar
  18. 18.
    D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, and G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998).CrossRefGoogle Scholar
  19. 19.
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Science 279, 548 (1998).CrossRefGoogle Scholar
  20. 20.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscow, R.A. Pierotti, J. Rouquérol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
  21. 21.
    M. Imperor-Clerc, P. Davidson, and A. Davidson, J. Am. Chem. Soc. 122, 11925 (2000).CrossRefGoogle Scholar
  22. 22.
    P. Selvam, S.K. Bhatia, and C.G. Sonwane, Ind. Eng. Chem. Res. 40, 3237 (2001).CrossRefGoogle Scholar
  23. 23.
    E. Torres, B. Siminovich, E. Barzana, and R. Vazquez-Duhalt, J. Mol. Catal. B: Enzym. 4, 155 (1998).CrossRefGoogle Scholar
  24. 24.
    F. van de Velde, M. Bakker, F. van Rantwijk, and R.A. Sheldon, Biotechnol. Bioeng. 72, 523 (2001).CrossRefGoogle Scholar
  25. 25.
    L. Santhanam and J.S. Dordick, Biocatal. Biotransform. 20, 265 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of ChemistryChemical TechnologyKaiserslauternGermany

Personalised recommendations