Journal of Porous Materials

, Volume 13, Issue 3–4, pp 325–330 | Cite as

Fabrication of SiO2-ZrO2 composite fiber mats via electrospinning

  • Jun-Bin Ko
  • Sung Wook Lee
  • Dong Eun Kim
  • Young Un Kim
  • Gang Li
  • Seung Goo Lee
  • Tae-Sun Chang
  • Dojin Kim
  • Yong Lak Joo
Article

Abstract

(1 − x)SiO2-(x)ZrO2 (x = 0.1, 0.2) composite fiber mats were prepared by electrospinning their sol-gel precursors of zirconium acetate and tetraethyl orthosilicate (TEOS) without using a polymer binder. The electrospun composite fibers were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and mercury porosimetry. The composite fibers having a tetragonal crystalline ZrO2 were obtained by calcining the electrospun composite fibers at high temperatures. The results show that the structure and crystallization of ZrO2 in the composite fibers can be controlled by sintering temperature, while the porosity and morphology of the fiber mats did not depend on the sintering temperature.

Keywords

Electrospinning SiO2-ZrO2 Sol-gel process Composite fibers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nogami, J. Non-Cryst. Solids 69, 415 (1985).CrossRefGoogle Scholar
  2. 2.
    J.B. Miller and E.I. Ko, J. Catal. 159, 58 (1996).CrossRefGoogle Scholar
  3. 3.
    H. Yang, R. Ru, L. Shen, L. Song, J. Zhao, Z. Wang, and W. Li, Mater. Lett. 1, 4201 (2002).Google Scholar
  4. 4.
    F. Garbassi, L. Balducci, and R. Ungarelli, J. Non-Cryst. Solids 223, 190 (1998).CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, J. Shen, J. Wang, G. Wu, and L. Chen, Int. J. Inorg. Mater. 2, 319 (2000).CrossRefGoogle Scholar
  6. 6.
    C. Flego, L. Carluccio, C. Rizzo, and C. Perego, Catal. Commun. 2, 43 (2001).CrossRefGoogle Scholar
  7. 7.
    K. Okasaka, H. Nasu, and K. Kamiya, J. Non-Cryst. Solids 136, 103 (1991).CrossRefGoogle Scholar
  8. 8.
    S.H. Teo and H.C. Zeng, J. Phys. Chem. B 105, 9093 (2001).CrossRefGoogle Scholar
  9. 9.
    K. Damodaran, V. Nagarajan, and K. Rao, J. Mater. Sci. 124, 233 (1990).CrossRefGoogle Scholar
  10. 10.
    O. Stachs, Th. Gerber, and V. Petkov, J. Mater. Sci. 32, 4209 (1997).CrossRefGoogle Scholar
  11. 11.
    D.M. Pickup, G. Mountjoy, G.W. Wallidge, R.J. Newport, and M.E. Smith, Phys. Chem. Chem. Phys. 1, 2527 (1999).CrossRefGoogle Scholar
  12. 12.
    G. Mountjoy, D.M. Pickup, R. Anderson, G.W. Wallidge, M.A. Holland, R.J. Newport, and M.E. Smith, Phys. Chem. Chem. Phys. 2, 2455 (2000).CrossRefGoogle Scholar
  13. 13.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), p. 839.Google Scholar
  14. 14.
    W. Que, Z. Sun, T.L. Lam, and C.H. Kam, J. Phys. D: Appl. Phys. 34, 471 (2001).CrossRefGoogle Scholar
  15. 15.
    S.-S. Choi, S.G. Lee, C.W. Joo, S.S. Im, and S.H. Kim, J. Mater. Sci. Lett. 39, 1511 (2004).Google Scholar
  16. 16.
    H. Dai, H.J. Gong, H. Kim, and D. Lee, Nanotechnology 13, 674 (2002).CrossRefGoogle Scholar
  17. 17.
    H. Guan, C. Shao, S. Wen, B. Chen, J. Gong, and X. Yang, Mater. Chem. Phys. 82, 1002 (2003).CrossRefGoogle Scholar
  18. 18.
    P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, D.R. Lee, S.R. Kim, and M.A. Morris, Chem. Phys. Lett. 374, 79 (2003).CrossRefGoogle Scholar
  19. 19.
    P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, and D.R. Lee, Scripta Materialia 49, 577 (2003).CrossRefGoogle Scholar
  20. 20.
    C. Shao, H. Kim, J. Gong, and D. Lee, Nanotechnology 13, 635 (2002).CrossRefGoogle Scholar
  21. 21.
    S.-S. Choi, S.G. Lee, S.S. Im, S.H. Kim, and Y.L. Joo, J. Mater. Sci. Lett. 22, 891 (2003).CrossRefGoogle Scholar
  22. 22.
    S. Madhugiri, B. Sun, P.G. Smirniotis, J.P. Feraris, and K.J. Balkus Jr., Microporous and Mesopouous Materials 69, 77 (2004).CrossRefGoogle Scholar
  23. 23.
    H. Guan, C. Shao, B. Chen, J. Gong, and X. Yang, Inorg. Chem. Commun. 6 1409 (2003).CrossRefGoogle Scholar
  24. 24.
    D. Li, T. Herricks, and Y. Xia, Appl. Phys. Lett. 83 4586 (2003).CrossRefGoogle Scholar
  25. 25.
    H. Guan, C. Shao, Y. Liu, N. Yu, and X. Yang, Solid State Commun. 131, 107 (2004).CrossRefGoogle Scholar
  26. 26.
    Y. Wang and J.J. Santiago-Aviles, Nanotechnology 15, 32 (2004).CrossRefGoogle Scholar
  27. 27.
    N. Dharmaraj, H.C. Park, C.K. Kim, H.Y. Kim, and D.R. Lee, Mater. Chem. Phys. 87, 5 (2004).CrossRefGoogle Scholar
  28. 28.
    S.-S. Choi, B. Chu, S.G. Lee, S.W. Lee, S.S. Im, S.H. Kim, and J.K. Park, J. Sol-Gel Sci. Tech. 30, 215 (2004).CrossRefGoogle Scholar
  29. 29.
    M. Andrianainarivelo, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chem. 6(10), 1665 (1996).CrossRefGoogle Scholar
  30. 30.
    S.W. Lee and R.A. Condrate Sr, J. Mater. Sci. 23, 2951 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Jun-Bin Ko
    • 1
  • Sung Wook Lee
    • 2
  • Dong Eun Kim
    • 3
  • Young Un Kim
    • 3
  • Gang Li
    • 3
  • Seung Goo Lee
    • 3
  • Tae-Sun Chang
    • 4
  • Dojin Kim
    • 5
  • Yong Lak Joo
    • 6
  1. 1.Division of Mechanical EngineeringHanbat National UniversityDaejeonKorea
  2. 2.Research Institute of Advanced MaterialsChungnam National UniversityDaejeonKorea
  3. 3.Department of Textile EngineeringChungnam National UniversityDaejeonKorea
  4. 4.Division of Advanced Chemical TechnologyKorea Research Institute of Chemical TechnologyDaejeonKorea
  5. 5.Department of Materials Science & EngineeringChungnam National UniversityDaejeonKorea
  6. 6.School of Chemical & Biomolecular EngineeringCornell UniversityIthacaUSA

Personalised recommendations