Journal of Porous Materials

, Volume 13, Issue 3–4, pp 187–193 | Cite as

Synthesis of mesoporous aluminosilicates with low Si/Al ratios using a single-source molecular precursor under acidic conditions

  • Ying Li
  • Qihua YangEmail author
  • Jie Yang
  • Can Li


A single molecular precursor, bis(sec-butoxy)-aluminoxy-triethoxysilane, was used as aluminum source for the synthesis of mesoporous aluminosilicates with Si/Al ratios ranging from 1 to 10 under acidic conditions. Aluminum can be stoichiometrically incorporated into the mesoporous materials at pH = 1.5. The mesoporous aluminosilicates synthesized with the single molecular precursor display larger unit cell parameter and pore diameter than that of the materials prepared with aluminum sulfate, aluminum nitrate, aluminum hydroxide, and aluminum isopropoxide as the aluminum sources. IR spectra of adsorbed pyridine and NH3-TPD showed that both Brönsted acidic sites and Lewis acid sites with medium strength are present in the materials. However, no direct relationship between the acidic properties and the content of aluminum was observed when the Si/Al ratios of the mesoporous aluminosilicates are lower than 10.


Mesoporous Aluminosilicates Bis(sec-butoxy)aluminoxy-triethoxysilane Si/Al ratio Acidity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature (London) 359, 710 (1992); (b) J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.C. Cullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
  2. 2.
    Corma, M.S. Grand, and A.V. Gonzalez, A.V. Orichilles, J.Catal. 159, 375 (1996).CrossRefGoogle Scholar
  3. 3.
    M. Selvaraj, A. Pandurangan, K.S. Seshadri, P.K. Sinha, V. Krishnasamy, and K.B. Lal, J. Molecular. Catal. A: Chemical. 186, 173 (2002); (b) S.K. Jana, H. Takahashi, M. Nakamura, M. Kaneko, R. Nishida, H. Shimizu, T. Kugita, and S. Namba, Appl. Catal. A: General 245, 33 (2003).Google Scholar
  4. 4.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Science (Washington, D.C.) 279, 548 (1998); (b) D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, and G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998).Google Scholar
  5. 5.
    Y. Yue, A. Cedeon, J.L. Bonardet, N. Melosh, J.B.D’Esinose, and J. Fraissard, Chem. Commun. 1967 (1999). (b) A. Cedeon, A. Lassoued, J.L. Bonardet, and J. Fraissard, Micro. Meso. Mater. 801, 44 (2001).Google Scholar
  6. 6.
    W.H. Zhang, J. Lu, B. Han, M. Li, J. Xiu, P. Ying, and C. Li, Chem. Mater. 14, 3413 (2002).CrossRefGoogle Scholar
  7. 7.
    Y. Li, W.H. Zhang, L. Zhang, Q.H. Yang, Z.B. Wei, Z.C. Feng, and C. Li, J. Phys. Chem. B 108, 9739 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Wu, Y. Han, Y.C. Zou, J.W. Song, L. Zhao, Y. Di, S.Z. Liu, and F.S. Xiao, Chem. Mater. 16, 486 (2004).CrossRefGoogle Scholar
  9. 9.
    Vinu, V. Murugesan, W. Böhlmann, and M. Hartmann, J. Phys. Chem. B 108, 11496 (2004).CrossRefGoogle Scholar
  10. 10.
    W. Li, S. Huang, S. Liu, and M.O. Coppens, Langmuir 21, 2078 (2005).CrossRefGoogle Scholar
  11. 11.
    C.G. Lugmair, K.L. Fujdala, and T.D. Tilley, Chem. Mater. 14, 888 (2002).CrossRefGoogle Scholar
  12. 12.
    K.L. Fujdala and T.D. Tilley, Chem. Mater. 14, 1376 (2002).CrossRefGoogle Scholar
  13. 13.
    K.L. Fujdala and T.D. Tilley, Chem. Mater. 13, 1817 (2001).CrossRefGoogle Scholar
  14. 14.
    K.L. Fujdala and T.D. Tilley, J. Am. Chem. Soc. 123, 10133 (2001).CrossRefGoogle Scholar
  15. 15.
    M.P. Coles, C.G. Lugmair, and K.W. Terry, Chem. Mater. 12, 122 (2000).CrossRefGoogle Scholar
  16. 16.
    J.B. Miller, E.R. Tabone, and E.I. Ko, Langmuir 12, 2878 (1996).CrossRefGoogle Scholar
  17. 17.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscow, R.A. Pierotti, and J. Ronquerol, Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
  18. 18.
    J.L. Blin, A. Le onard, and B.L. Su, J. Phys. Chem. B 105, 6070 (2001).CrossRefGoogle Scholar
  19. 19.
    E.P. Parris, J. Catal. 2, 371 (1963).CrossRefGoogle Scholar
  20. 20.
    C.A. Emeis, J. Catal. 141, 347 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations