Advertisement

Journal of Paleolimnology

, Volume 62, Issue 3, pp 259–278 | Cite as

Palaeomagnetism for chronologies of recent alpine lake sediments: successes and limits

  • C. CrouzetEmail author
  • B. Wilhelm
  • P. Sabatier
  • F. Demory
  • N. Thouveny
  • C. Pignol
  • J.-L. Reyss
  • O. Magand
  • A. Jeltsch-Thömmes
  • M. Bajard
  • L. Augustin
  • F. Arnaud
Original paper

Abstract

Chronologies of lake-sediment records covering the last centuries to millennia are usually based on both short-lived radionuclides and radiocarbon dating. However, beyond the range of short-lived radionuclides, age model accuracy often suffers from large radiocarbon uncertainties. For high-altitude records, this issue is even more prominent as terrestrial plant fragments for radiocarbon dating are often lacking due to the sparse vegetation in such environments. In this study, we evaluate the potential of the geomagnetic field secular variations as a complementary tool to establish more robust age–depth relationships. Our palaeomagnetic study, applied to five high-altitude lakes from the western European Alps, first shows that recent unconsolidated sediments can carry stable remanent magnetization. The analysis of the magnetic parameters indicates that low-coercivity pseudo-single domain magnetite grains carry the natural magnetization. Nevertheless, the quality of palaeomagnetic secular variation records varies from one lake to another. This quality can be illustrated through the calculation of the declination/inclination maximum angular variations and their comparison to the expected value. Compared with available models, the declination variations are usually too large and the inclination too high. We discuss the validity of palaeosecular variation (PSV) of the Earth’s magnetic field regarding rock magnetism, magnetization processes and possible deformation during coring. From a magnetic point of view, the quality of data is variable, but the characteristic remanent magnetization direction is consistent at site level between neighbouring lakes and with the reference curve, suggesting that geomagnetic field secular variations are approximately recorded. Finally, we attempt to correlate the declination/inclination variations of the characteristic remanent magnetization measured in the five records to the reference geomagnetic model to provide additional chronological markers for age–depth modelling. These stratigraphic chrono-markers appear in systematic agreement with our previous chronological data and enable a reduction of dating uncertainties up to 30% when including these chrono-markers in the age–depth modelling. This agreement supports the interpretation that PSV may have been recorded more or less accurately depending on the studied lake. Therefore, coupled with a comprehensive understanding through other analysis (sedimentology, dating, geochemistry), PSV can be used to improve the age models in the more favourable cases.

Keywords

Paleomagnetism Secular variation Lake sediment Dating Magnetization Alps 

Notes

Acknowledgements

This work was supported by Université Savoie Mont Blanc BQR internal grants. Gravity coring was achieved with the support of the Edytem and Climcore Equipex coring facilities. The authors thank the CNRS-INSU ARTEMIS national radiocarbon AMS measurement program at the Laboratoire de Mesure 14C (LMC14) in the CEA Institute at Saclay (French Atomic Energy Commission). The authors thank the Laboratoire Souterrain de Modane (LSM) facilities for the gamma spectrometry measurements. We acknowledge two anonymous reviewers, the editor and the associated editor for fruitful comments.

Supplementary material

10933_2019_87_MOESM1_ESM.pdf (20.3 mb)
Supplementary material 1 (PDF 20792 kb)
10933_2019_87_MOESM2_ESM.pdf (461 kb)
Supplementary material 2 (PDF 461 kb)
10933_2019_87_MOESM3_ESM.pdf (364 kb)
Supplementary material 3 (PDF 363 kb)

References

  1. Ali M, Oda H, Hayashida A, Takemura K, Torii M (1999) Holocene palaeomagnetic secular variation at Lake Biwa, central Japan. Geophys J Int 136(1):218–228CrossRefGoogle Scholar
  2. Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18:83–93CrossRefGoogle Scholar
  3. Appleby PG, Richardson N, Nolan P (1991) 241Am dating of lake sediments. Hydrobiologia 214:35–42CrossRefGoogle Scholar
  4. Arnaud F, Lignier V, Revel M, Desmet M, Pourchet M, Beck C, Charlet F, Trentesaux A, Tribovillard N (2002) Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, North French Alps). Terra Nova 14:225–232CrossRefGoogle Scholar
  5. Bajard M, Sabatier P, David F, Deville A-L, Reyss J-L, Fanget B, Malet E, Arnaud D, Augustin L, Crouzet C, Poulenard J, Arnaud F (2016) Holocene record of erosion inferred from multi-proxy sediment analyses reflects changes in mountain belt landscape of lake La Thuile (Massif des Bauges, France). Holocene 26(3):350–364CrossRefGoogle Scholar
  6. Barletta F, St-Onge G, Channell JE, Rochon A (2010) Dating of Holocene western Canadian Arctic sediments by matching paleomagnetic secular variation to a geomagnetic field model. Quat Sci Rev 29:2315–2324CrossRefGoogle Scholar
  7. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochr 5:512–518CrossRefGoogle Scholar
  8. Bloemendal J, King JW, Hall FR, Doh SJ (1992) Rock magnetism of Late Neogene and Pleistocene deep-sea sediments relationship to sediment source, diagenetic processes, and sediment lithology. J Geophys Res 97:4361–4375CrossRefGoogle Scholar
  9. Collombat H, Rochette P, Kent DV (1993) Detection and correction of inclination shallowing in deep sea sediments using the anisotropy of anhysteretic remanence. Bull Soc Geol Fr 164(1):103–111Google Scholar
  10. Creer KM, Thompson R, Molyneux L, Mackereth FJH (1972) Geomagnetic secular variation recorded in the stable magnetic remanence of recent sediments. Earth Planet Sci Lett 14:115–127CrossRefGoogle Scholar
  11. Demory F, Nowaczyk NR, Witt A, Oberhänsli H (2005) High-resolution magnetostratigraphy of late quaternary sediments from Lake Baikal, Siberia: timing of intracontinental paleoclimatic responses. Glob Planet Change 46(1–4):167–186CrossRefGoogle Scholar
  12. Donadini F, Korte M, Constable C (2009) Geomagnetic field for 0–3 ka: 1. New data sets for global modeling. Geochem Geophys Geosys 10:Q06007.  https://doi.org/10.1029/2008GC002295 CrossRefGoogle Scholar
  13. Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J Geophys Res 107(B3):4-1–4-22Google Scholar
  14. Egli R, Chen AP, Winklhofer M, Kodama KP, Horng C-S (2010) Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem Geophys Geosyst 11:Q01Z11.  https://doi.org/10.1029/2009GC002916 CrossRefGoogle Scholar
  15. Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898CrossRefGoogle Scholar
  16. Garcés M, Parés JM, Cabrera L (1996) Inclination error linked to sedimentary facies in Miocene detrital sequences from the Vallès-Penedès Basin (NE Spain). Geol Soc Lond Spec Publ 105(1):91–99CrossRefGoogle Scholar
  17. Goldberg ED (1963) Geochronology with lead-210. Radioactive Dating. IAEA Symposium, Vienna, pp 121–131Google Scholar
  18. Hogg TE (1978) The Holocene geomagnetic field in Europe. PhD thesis University of EdinburghGoogle Scholar
  19. Jackson MJ, Banerjee SK, Marvin JA, Lu R, Gruber W (1991) Detrital remanence, inclination errors, and anhysteretic remanence anisotropy: quantitative model and experimental results. Geophys J Int 104(1):95–103CrossRefGoogle Scholar
  20. Kim BY, Kodama KP, Moeller RE (2005) Bacterial magnetite produced in water column dominates lake sediment mineral magnetism: Lake Ely, USA. Geophys J Int 163:26–37CrossRefGoogle Scholar
  21. King JW, Banerjee SK, Marvin J (1983) A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. J Geophys Res Solid Earth 88(B7):5911–5921CrossRefGoogle Scholar
  22. Korte M, Donadini F, Constable CG (2009) Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem Geophys Geosyst 10:Q06008.  https://doi.org/10.1029/2008GC002297 CrossRefGoogle Scholar
  23. Korte M, Constable C, Donadini F, Holme R (2011) Reconstructing the Holocene geomagnetic field. Earth Plan Sci Lett 312(3):497–505CrossRefGoogle Scholar
  24. Lougheed BC, Nilsson A, Björck S, Snowball I, Muscheler R (2014) A deglacial palaeomagnetic master curve for Fennoscandia—providing a dating template and supporting millennial-scale geomagnetic field patterns for the past 14 ka. Quat Sci Rev 106:155–166CrossRefGoogle Scholar
  25. Lund SP, Platzman E (2015) Paleomagnetic chronostratigraphy of late Holocene Zaca Lake, California. Holocene 26(5):814–821CrossRefGoogle Scholar
  26. Lurcock PC, Wilson GS (2012) PuffinPlot: a versatile, user-friendly program for paleomagnetic analysis. Geochem Geophys Geosyst 13:Q06Z45.  https://doi.org/10.1029/2012GC004098 CrossRefGoogle Scholar
  27. Monecke K, Anselmetti FS, Becker A, Sturm M, Giardini D (2004) The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics 394:21–40CrossRefGoogle Scholar
  28. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  29. Reyss JL, Schimdt S, Legeleux F, Bonte P (1995) Large low background well type detectors for measurements of environmental radioactivity. Nucl Instr Methods 357:391–397CrossRefGoogle Scholar
  30. Roberts AP (2015) Magnetic mineral diagenesis. Earth Sci Rev 151:1–47CrossRefGoogle Scholar
  31. Roberts AP, Florindo F, Villa G, Chang L, Jovane L, Bohaty SM, Larrasoaña J, Heslop D, Fitz Gerald JD (2011) Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron. Earth Plan Sci Lett 310:441–452CrossRefGoogle Scholar
  32. Roberts AP, Chang L, Heslop D, Florindo F, Larrasoaña JC (2012) Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations. J Geophys Res Solid Earth.  https://doi.org/10.1029/2012JB009412 Google Scholar
  33. Rolph TC, Vigliotti L, Oldfield F (2004) Mineral magnetism and geomagnetic secular variation of marine and lacustrine sediments from central Italy: timing and nature of local and regional Holocene environmental change. Quat Sci Rev 23:1699–1722CrossRefGoogle Scholar
  34. Rösler W, Appel E (1998) Fidelity and time resolution of the magnetostratigraphic record in Siwalik sediments: high-resolution study of a complete polarity transition and evidence for cryptochrons in a Miocene fluviatile section. Geophys J Int 135(3):861–875CrossRefGoogle Scholar
  35. Rowan CJ, Roberts AP, Broadbent T (2009) Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: a new view. Earth Plan Sci Lett 277:223–235CrossRefGoogle Scholar
  36. Sabatier P, Dezileau L, Blanchemanche P, Siani G, Condomines M, Bentaleb I, Piquès G (2010) Holocene variations of radiocarbon reservoir ages in a Mediterranean lagoonal system. Radiocarbon 52:91–102CrossRefGoogle Scholar
  37. Spassov S, Valet JP (2012) Detrital magnetization from redeposition experiments of natural sediments. Earth Plan Sci Lett 351:147–157CrossRefGoogle Scholar
  38. Tarduno JA, Tian W, Wilkison S (1998) Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean. Geophys Res Lett 25:3987–3990CrossRefGoogle Scholar
  39. Tauxe L, Banerjee SK, Butler RF, Van der Voo R (2010) Essentials of paleomagnetism. UC Press, Berkeley, p 512Google Scholar
  40. Thompson R, Kelts K (1974) Holocene Sediments and Magnetic Stratigraphy from Lakes Zug and Zurich, Switzerland. Sedimentology 21:577–596CrossRefGoogle Scholar
  41. Thompson R, Turner GM (1979) British geomagnetic master curve 10,000‐0 yr BP for dating European sediments. Geophys Res Lett 6(4):249–252CrossRefGoogle Scholar
  42. Valet JP, Tanty C, Carlut J (2017) Detrital magnetization of laboratory—redeposited sediments. Geophys J Int 201:34–41CrossRefGoogle Scholar
  43. Vigliotti L (2006) Secular variation record of the Earth’s magnetic field in Italy during the Holocene: constraints for the construction of a master curve. Geophys J Int 165:414–429CrossRefGoogle Scholar
  44. Wilhelm B (2012) Reconstitution sédimentologique des extrêmes hydrologiques au cours du dernier millénaire dans les Alpes françaises: Relations avec les changements climatiques. Doctoral dissertation, PhD thesis, Université de GrenobleGoogle Scholar
  45. Wilhelm B, Arnaud F, Sabatier P, Crouzet C, Brisset E, Chaumillon E, Disnar JR, Guiter F, Malet E, Reyss JL, Tachikawa K, Bard E, Delannoy JJ (2012a) 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quatern Res 78(1):1–12CrossRefGoogle Scholar
  46. Wilhelm B, Arnaud F, Enters D, Allignol F, Legaz A, Magand O, Revillon S, Giguet-Covex C, Malet E (2012b) Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Clim Change 113(3–4):563–581CrossRefGoogle Scholar
  47. Wilhelm B, Vogel H, Crouzet C, Etienne D, Anselmetti FS (2016a) Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains. Clim Past 12:299–316CrossRefGoogle Scholar
  48. Wilhelm B, Nomade J, Crouzet C, Litty C, Sabatier P, Belle S, Rolland Y, Revel M, Courboulex F, Arnaud F, Anselmetti FS (2016b) Quantified sensitivity of lakes to record historic earthquakes: implications for paleoseismology. J Geophys Res Earth Surf 120:2–16CrossRefGoogle Scholar
  49. Wilhelm B, Ballesteros Canovas JA, Corella Aznar JP, Kämpf L, Swierczynski T, Stoffel M, Støren E, Toonen W (2018) Recent advances in paleoflood hydrology: from new archives to data compilation and analysis. Water Secur 3:1–8CrossRefGoogle Scholar
  50. Yang X, Liu Q, Duan Z, Su Z, Wei G, Jia G, Ouyang T, Su Y, Xie L (2012) A Holocene palaeomagnetic secular variation record from Huguangyan maar Lake, southern China. Geophys J Int 190:188–200CrossRefGoogle Scholar
  51. Yang X, Yang J, Su Z, Huang W, Wang J (2013) Paleosecular variations refining the chronology of the sediments from the Pearl River Delta, southern China. Holocene 23(5):635–644CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Université Savoie Mont BlancUniversité Grenoble Alpes, CNRS, IRD, IFFSTAR, ISTerreLe Bourget Du LacFrance
  2. 2.Université Grenoble Alpes, CNRS, IRD, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), IGEGrenobleFrance
  3. 3.Université Grenoble AlpesUniversité Savoie Mont Blanc, CNRS, UMR 5204, EDYTEMChambéry CedexFrance
  4. 4.Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGEAix-En-ProvenceFrance
  5. 5.LSCEUniversité de Versailles Saint-Quentin CEA-CNRSGif-Sur-Yvette CedexFrance
  6. 6.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  7. 7.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  8. 8.Centre for Earth Evolution and DynamicsUniversity of OsloOsloNorway
  9. 9.Division technique de l’INSUCentre de Carottage et de Forage National, CNRSLa Seyne sur MerFrance

Personalised recommendations