Journal of Paleolimnology

, Volume 61, Issue 3, pp 279–295 | Cite as

Climatic and tectonic controls on source-to-sink processes in the tropical, ultramafic catchment of Lake Towuti, Indonesia

  • Marina A. MorlockEmail author
  • Hendrik Vogel
  • Valentin Nigg
  • Luis Ordoñez
  • Ascelina K. M. Hasberg
  • Martin Melles
  • James M. Russell
  • Satria Bijaksana
  • the TDP Science Team
Original paper


Humid tropical landscapes are subject to intense weathering and erosion, which strongly influence sediment mobilisation and deposition. In this setting, we aimed to understand how geomorphology and hydroclimate altered the style and intensity of erosion and sediment composition in a tropical lake and its tectonically active catchment. Lake Towuti (2.75°S, 121.5°E) is one of the oldest and deepest lakes in Indonesia, with uninterrupted lacustrine sedimentation over several glacial–interglacial cycles. Here we present results from a novel set of Lake Towuti surface sediment, bedrock and soil samples from the catchment, and two existing sediment cores that extend to 30,000 and 60,000 years before present. We studied the catchment morphology, soil properties, geochemistry, and clay and bulk mineralogy. Results from several river long profiles show clear signs of tectonic activity, which enhances river incision, favours mass movement processes, and together with remobilisation of fluvial deposits, strongly influences modern sedimentation in the lake. Material from the Mahalona River, the lake’s largest inflow, dominates modern sediment composition in Towuti’s northern basin. The river transports Al-poor and Mg-rich sediments (mainly serpentines) to the lake, indicating river incision into the Mg-rich serpentinised peridotite bedrock. Relatively small, but important additional contributions of material, come from direct laterite-derived input and the Loeha River, which both provide Al-rich and Mg-poor sediment to the lake. Over time, the Al/Mg and kaolinite-to-serpentine ratios varied strongly, primarily in response to lake-level fluctuations driven by hydroclimatic changes. In the past 60,000 years, both the Al/Mg and kaolinite-to-serpentine ratios showed variations sensitive to changes in climate boundary conditions across glacial-interglacial cycles, while tectonic activity had less influence on changes in sediment composition on these short time-scales.


Laterite Erosion Hydroclimate Lake Towuti Lake level Tropical palaeoclimate 



The Towuti Drilling Project was partially supported by grants from the International Continental Scientific Drilling Program, the US National Science Foundation, the German Research Foundation, the Swiss National Science Foundation (20FI21_153054/1 and 200021_153053/1), Brown University, Genome British Columbia, and the Ministry of Research, Technology, and Higher Education (RISTEK). PT Vale Indonesia, the US Continental Drilling Coordination Office, the GeoForschungszentrum Potsdam and DOSECC Exploration Services are acknowledged for logistical assistance to the project. We further thank Franziska Nyffenegger for support with the geotechnical analysis, Urs Eggenberger and Christine Lemp for help with the clay and bulk XRD analysis, Elias Kempf for assistance with thin section analysis, as well as Pierre Valla and Romain Delunel for fruitful discussions regarding the geomorphic aspects of the study. This research was carried out with permission from the Ministry of Research and Techonology (RISTEK), the Ministry of Trade of the government of Indonesia, and the Natural Resources Conservation Center (BKSDA) and Government of Luwu Timur of Sulawesi. We also wish to thank two anonymous reviewers and the editors for their helpful comments and suggestions, which improved our manuscript.

Supplementary material

10933_2018_59_MOESM1_ESM.docx (9.3 mb)
Supplementary material 1 (DOCX 9534 kb)


  1. Adunoye GO (2014) Fines content and angle of internal friction of a lateritic soil: an experimental study. Am J Eng Res 3:16–21Google Scholar
  2. Bellier O, Sébrier M, Seward D, Beaudouin T, Villeneuve M, Putranto E (2006) Fission track and fault kinematics analyses for new insight into the Late Cenozoic tectonic regime changes in West-Central Sulawesi (Indonesia). Tectonophysics 413:201–220. CrossRefGoogle Scholar
  3. Brand NW, Butt CRM, Elias M (1998) Nickel laterites: classification and features. J Aust Geol Geophys 17:81–88Google Scholar
  4. Casagrande L (1932) Research of Atterberg limits of soils. Public Roads 13:121–136Google Scholar
  5. Chester R, Elderfield H (1973) An infrared study of clay minerals, 2. The identification of kaolinite-group clays in deep-sea sediments. Chem Geol 12:281–288CrossRefGoogle Scholar
  6. Chukanov NV (2014) Infrared spectra of mineral species. Springer, DordrechtCrossRefGoogle Scholar
  7. Colin F, Nahon D, Trescases JJ, Melfi AJ (1990) Lateritic weathering of pyroxenites at Niquelandia, Goias, Brazil: the supergene behavior of nickel. Econ Geol 85:1010–1023CrossRefGoogle Scholar
  8. Costa KM, Russell JM, Vogel H, Bijaksana S (2015) Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 417:467–475. CrossRefGoogle Scholar
  9. Crowe SA, Jones C, Katsev S, Magen C, O’Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowle DA (2008) Photoferrotrophs thrive in an Archean Ocean analogue. Proc Natl Acad Sci USA 105:15938–15943. CrossRefGoogle Scholar
  10. Dam RAC, Fluin J, Suparan P, van der Kaars S (2001) Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33,000 yr BP. Palaeogeogr Palaeoclimatol Palaeoecol 171:147–183CrossRefGoogle Scholar
  11. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  12. De Deckker P, Tapper NJ, van der Kaars S (2002) The status of the Indo-Pacific Warm Pool and adjacent land at the last glacial maximum. Glob Planet Chang 35:25–35CrossRefGoogle Scholar
  13. DIN 18137-1. German Industrial Norm (2010) Baugrund, Untersuchung von Bodenproben. Bestimmung der Scherfestigkeit, Teil 1: Begriffe und grundsätzliche Versuchsbedingungen [Soil, investigation and testing—Determination of shear strength—Part 1: Concepts and general testing conditions]Google Scholar
  14. DIN 18137-3. German Industrial Norm (2002) Baugrund, Untersuchung von Bodenproben. Bestimmung der Scherfestigkeit, Teil 3: Direkter Scherversuch [Soil, investigation and testing - Determination of shear strength - Part 3: Direct shearing test]Google Scholar
  15. Dubois N, Oppo DW, Galy VV, Mohtadi M, van der Kaars S, Tierney JE, Rosenthal Y, Eglinton TI, Lückge A, Linsley BK (2014) Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nat Geosci 7:513–517. CrossRefGoogle Scholar
  16. Farmer VC (1974) The infrared spectra of minerals. Adlard and Son, DorkingCrossRefGoogle Scholar
  17. Golightly JP, Arancibia ON (1979) The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia. Can Miner 17:719–728Google Scholar
  18. Goudge TA, Russell JM, Mustard JF, Head JW, Bijaksana S (2017) A 40,000 yr record of clay mineralogy at Lake Towuti, Indonesia: paleoclimate reconstruction from reflectance spectroscopy and perspectives on paleolakes on Mars. Bull Geol Soc Am 129:806–819. CrossRefGoogle Scholar
  19. Haffner GD, Hehanussa PE, Hartoto D (2001) The biology and physical processes of large lakes of Indonesia: Lakes Matano and Towuti. In: Munawar M, Hecky RE (eds) The Great Lakes of the World (GLOW). Michigan State University Press, pp 183–192Google Scholar
  20. Hasberg AKM, Melles M, Wennrich V, Just J, Held P, Morlock MA, Vogel H, Russell JM, Bijaksana S, Opitz S (2018) Modern sedimentation processes in Lake Towuti, Indonesia, revealed by the composition of surface sediments. Sedimentology.
  21. Helmens KF, Bos JAA, Engels S, Van Meerbeeck CJ, Bohncke SJP, Renssen H, Heiri O, Brooks SJ, Seppä H, Birks HJB, Wohlfarth B (2007) Present-day temperatures in northern Scandinavia during the last glaciation. Geology 35:987–990. CrossRefGoogle Scholar
  22. Hope G (2001) Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol 171:129–145CrossRefGoogle Scholar
  23. Jones ES, Hayes GP, Bernardino M, Dannemann FK, Furlong KP, Benz HM, Villaseñor A (2014) Seismicity of the Earth 1900–2012, Java and vicinity. U.S. Geological Survey Open-File Report 2010–1083-N, 1 sheet, scale 1:5,000,000.
  24. Kadarusman A, Miyashita S, Maruyama S, Parkinson CD, Ishikawa A (2004) Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics 392:55–83. CrossRefGoogle Scholar
  25. Konecky B, Russell JM, Bijaksana S (2016) Glacial aridity in central Indonesia coeval with intensified monsoon circulation. Earth Planet Sci Lett 437:15–24. CrossRefGoogle Scholar
  26. Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10CrossRefGoogle Scholar
  27. Marsh E, Anderson E, Gray F (2013) Nickel–cobalt laterites—a deposit Model. In: Mineral deposit models of resource assessment. U.S. Geological Survey, Reston, USAGoogle Scholar
  28. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  29. Ogunsanwo O (1988) Basic geotechnical properties, chemistry and mineralogy of some laterite soils from S.W. Nigeria. Bull Int Assoc Eng Geol 37:131–135CrossRefGoogle Scholar
  30. Omotoso OA, Ojo OJ, Adetolaju ET (2012) Engineering properties of lateritic soils around Dall Quarry in Sango Area, Ilorin, Nigeria. Earth Sci Res 1:71–81. CrossRefGoogle Scholar
  31. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Accessed 13 Feb 2017
  32. Reeves JM, Bostock HC, Ayliffe LK, Barrows TT, De Deckker P, Devriendt LS, Dunbar GB, Drysdale RN, Fitzsimmons KE, Gagan MK, Griffiths ML, Haberle SG, Jansen JD, Krause C, Lewis S, McGregor HV, Mooney SD, Moss P, Nanson GC, Purcell A, van der Kaars S (2013) Palaeoenvironmental change in tropical Australasia over the last 30,000 years—a synthesis by the OZ-INTIMATE group. Quat Sci Rev 74:97–114. CrossRefGoogle Scholar
  33. Robinson GW (1922) A new method for the mechanical analysis of soils and other dispersions. J Agric Sci 12:306–321CrossRefGoogle Scholar
  34. Russell JM, Vogel H, Konecky B, Bijaksana S, Huang Y, Melles M, Wattrus N, Costa KM, King JW (2014) Glacial forcing of central Indonesian hydroclimate since 60,000 y BP. PNAS 111:5100–5105. CrossRefGoogle Scholar
  35. Russell JM, Bijaksana S, Vogel H, Melles M, Kallmeyer J, Ariztegui D, Crowe S, Fajar S, Hafidz A, Haffner D, Hasberg A, Ivory S, Kelly C, King J, Kirana K, Morlock M, Noren A, O’Grady R, Ordonez L, Stevenson J, von Rintelen T, Vuillemin A, Watkinson I, Wattrus N, Wicaksono S, Wonik T, Bauer K, Deino A, Friese A, Henny C, Imran Marwoto R, Ngkoimani LO, Nomosatryo S, Safiuddin LO, Simister R, Tamuntuan G (2016) The Towuti Drilling Project: paleoenvironments, biological evolution, and geomicrobiology of a tropical Pacific lake. Sci Drill 21:29–40. CrossRefGoogle Scholar
  36. Sagapoa CV, Imai A, Watanabe K (2011) Laterization process of ultramafic rocks in Siruka, Solomon Islands. J Nov Carb Resourc Sci 3:32–39Google Scholar
  37. SN 670 010. Swiss Norm. Geotechnische Erkundung und Untersuchung—Geotechnische Kenngrössen [Geotechnical exploration and analysisGeotechnical parameters]. Edition 2011-08Google Scholar
  38. SN 670 902-1 (EN 933-1). Swiss Norm. Prüfverfahren für geometrische Eigenschaften von Gesteinskörnungen. Teil 1: Bestimmung der Korngrössenverteilung—Siebverfahren [Testing geometric properties of grains, Part 1: Grain-size distribution—Sieving]. Edition 2013-03Google Scholar
  39. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingólfsson Ó, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271. CrossRefGoogle Scholar
  40. Thomas MF (1996) Geomorphology in the tropics. Wiley, ChichesterGoogle Scholar
  41. U.S. Geological Survey (2017) Mineral commodity summaries 2017. U.S. Geological Survey, Reston. Google Scholar
  42. Van Meerbeeck CJ, Renssen H, Roche DM (2009) How did marine isotope stage 3 and last glacial maximum climates differ?—Perspectives from equilibrium simulations. Clim Past 5:33–51CrossRefGoogle Scholar
  43. Vogel H, Russell JM, Cahyarini SY, Bijaksana S, Wattrus N, Rethemeyer J, Melles M (2015) Depositional modes and lake-level variability at Lake Towuti, Indonesia, during the past ~ 29 kyr BP. J Paleolimnol 54:359–377. CrossRefGoogle Scholar
  44. Von Rintelen T, Von Rintelen K, Glaubrecht M, Schubart CD, Herder F (2012) Aquatic biodiversity hotspots in Wallacea: the species flocks in the ancient lakes of Sulawesi, Indonesia. In: Gower DJ, Johnson K, Richardson J, Rosen B, Rüber L, Williams S (eds) Biotic evolution and environmental change in Southeast Asia. Cambridge University Press, Cambridge, pp 291–315Google Scholar
  45. Watkinson IM, Hall R (2016) Fault systems of the eastern Indonesian triple junction: evaluation of Quaternary activity and implications for seismic hazards. In: Cummins PR, Meilano I (eds) Geohazards in Indonesia: Earth science for disaster risk reduction. Geological Society, London, pp 71–120Google Scholar
  46. Weber AK, Russell JM, Goudge TA, Salvatore MR, Mustard JF, Bijaksana S (2015) Characterizing clay mineralogy in Lake Towuti, Indonesia, with reflectance spectroscopy. J Paleolimnol 54:253–261. CrossRefGoogle Scholar
  47. Whipple KX, Kirby E, Brocklehurst SH (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature 401:39–43. CrossRefGoogle Scholar
  48. Wicaksono SA, Russell JM, Bijaksana S (2015) Compound-specific carbon isotope records of vegetation and hydrologic change in central Sulawesi, Indonesia, since 53,000 yr BP. Palaeogeogr Palaeoclimatol Palaeoecol 430:47–56. CrossRefGoogle Scholar
  49. Wicaksono SA, Russell JM, Holbourn A, Kuhnt W (2017) Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum. Quat Sci Rev 157:152–163. CrossRefGoogle Scholar
  50. Widdowson M (2007) Laterite and ferricrete. In: Nash DJ, McLaren SJ (eds) Geochemical sediments and landscapes. Blackwell Publishing, Malden, pp 46–94Google Scholar
  51. SN 670 816a. Swiss Norm. Mineralische Baustoffe, Schlämmanalyse nach der Aräometermethode [Minerogenic material—Sieving analysis by aerometric method]Google Scholar
  52. SN 670 345b. Swiss Norm. Böden—Konsistenzgrenzen [Soils—Plasticity Index]Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Marina A. Morlock
    • 1
    Email author
  • Hendrik Vogel
    • 1
  • Valentin Nigg
    • 1
  • Luis Ordoñez
    • 2
  • Ascelina K. M. Hasberg
    • 3
  • Martin Melles
    • 3
  • James M. Russell
    • 4
  • Satria Bijaksana
    • 5
  • the TDP Science Team
  1. 1.Institute of Geological Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  3. 3.Institute of Mineralogy and GeologyUniversity of CologneCologneGermany
  4. 4.Department of Earth, Environmental, and Planetary SciencesBrown UniversityProvidenceUSA
  5. 5.Faculty of Mining and Petroleum EngineeringInstitut Teknologi BandungBandungIndonesia

Personalised recommendations