Advertisement

A chironomid-inferred Holocene temperature record from a shallow Canadian boreal lake: potentials and pitfalls

  • Lisa Bajolle
  • Isabelle Larocque-Tobler
  • Adam A. Ali
  • Martin Lavoie
  • Yves Bergeron
  • Emmanuel Gandouin
Original paper

Abstract

The biodiversity of shallow (zmax < 5–7 m) lakes is sensitive to water-level and climate changes, but few such aquatic ecosystems have been studied in the context of quantitative climate reconstruction. Lac Lili (unofficial name) is located in the boreal forest of western Quebec, Canada, and was chosen for its shallowness (zmax = 1.40 m) to assess if chironomid assemblages in the sediments could be used to reconstruct Holocene temperature fluctuations quantitatively. Inferred temperatures displayed a decreasing trend from a maximum value ca. 8000–3500 cal year BP, slight warming between ca. 3500 and 3000 cal year BP, followed by cooling to the present. Although chironomid assemblages were influenced by factors other than climate, primarily water depth and changes in macrophyte richness, the reconstructed Holocene temperature pattern was very similar to the known regional climate history. Temperature inferences derived from the chironomid assemblages were, however, warmer than the two reference periods. This deviation was likely a consequence of three factors: (1) shallowness of the lake, which favoured littoral taxa with warmer-than-today temperature optima, (2) the low number of lakes warmer than 16 °C in the training set, and (3) the absence of shallow lakes in the training set.

Keywords

Chironomidae Holocene Paleoclimate reconstructions Transfer function Water level Boreal forest 

Notes

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Centre National de la Recherche Scientifique (France), the European IRSES NEWFORESTS program, the MITAC program, the Institut Universitaire de France and the Institut Écologie et Environnement through the GDRI “Forêts Froides.” We thank the French University Institute for its support, the University of Montpellier, and Aix-Marseille University. Our thanks to R. Julien, D. Gervais, B. Brossier, and M. Girardin for their participation in fieldwork. We greatly appreciate the contribution of the Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), especially P. Grondin.

Supplementary material

10933_2018_45_MOESM1_ESM.docx (72 kb)
Supplementary material 1 (DOCX 72 kb)

References

  1. Ali AA, Asselin H, Larouche AC, Bergeron Y, Carcaillet C, Richard PJH (2008) Changes in fire regime explain the Holocene rise and fall of Abies balsamea in the coniferous forests of western Quebec, Canada. Holocene 18:693–703CrossRefGoogle Scholar
  2. Ali AA, Carcaillet C, Bergeron Y (2009) Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors. Glob Change Biol 15:1230–1241CrossRefGoogle Scholar
  3. Ali AA, Blarquez O, Girardin MP, Hély C, Tinquaut F, El Guellab A, Valsecchi V, Terrier A, Bremond L, Genries A, Gauthier S, Bergeron Y (2012) Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proc Natl Acad Sci 109:20966–20970CrossRefGoogle Scholar
  4. Axford Y, Briner JP, Cooke CA, Francis DR, Michelutti N, Miller GH, Smol JP, Thomas EK, Wilson CR, Wolfe AP (2009) Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proc Natl Acad Sci 106:18443–18446CrossRefGoogle Scholar
  5. Bajolle L, Larocque-Tobler I, Gandouin E, Lavoie M, Bergeron Y, Ali AA (2018) Major postglacial summer temperature changes in the central coniferous boreal forest of Quebec (Canada) inferred using chironomid assemblages. J Quat Sci 33:409–420CrossRefGoogle Scholar
  6. Bennett KD (1996) Determination of the Number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  7. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  8. Blindow I, Hargeby A, Andersson G (2002) Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat Bot 72:315–334CrossRefGoogle Scholar
  9. Blouin J, Berger J-P (2005) Guide de reconnaissance des types écologiques: région écologique 6a, Plaine du Lac Matagami: Région écologique 6b, Plaine de la Baie de Rupert. Ministère Ressour Nat Faune Dir Inven For Div Classif Écologique Product StnGoogle Scholar
  10. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  11. Brodersen KP, Lindegaard C (1997) Significance of subfossile chironomid remains in classification of shallow lakes. Hydrobiologia 342–343:125–132CrossRefGoogle Scholar
  12. Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid-macrophyte co-occurrence. Freshw Biol 46:253–267CrossRefGoogle Scholar
  13. Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741CrossRefGoogle Scholar
  14. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic chironomidae in palaeoecology. QRA Technical Guide No. 10. Quat Res Assoc LondonGoogle Scholar
  15. Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506:23–27CrossRefGoogle Scholar
  16. El-Guellab A, Asselin H, Gauthier S, Bergeron Y, Ali AA (2015) Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest. For Ecosyst 2:1–7CrossRefGoogle Scholar
  17. Engels S, Cwynar LC (2011) Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665:15–38CrossRefGoogle Scholar
  18. Engels S, Cwynar LC, Rees ABH, Shuman BN (2012) Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models. J Paleolimnol 48:693–709CrossRefGoogle Scholar
  19. Environnement Canada (2017) Normales Climatiques au Canada, Service Météorologique du Canada. Available at http://climate.weatheroffice.ec.gc.ca/climate_normals/. Accessed 15 April 2017
  20. Garralla S, Gajewski K (1992) Holocene vegetation history of the boreal forest near Chibougamau, central Quebec. Can J Bot 70:1364–1368CrossRefGoogle Scholar
  21. Glew JR (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287CrossRefGoogle Scholar
  22. Greffard M-H, Saulnier-Talbot É, Gregory-Eaves I (2012) Sub-fossil chironomids are significant indicators of turbidity in shallow lakes of northeastern USA. J Paleolimnol 47:561–581CrossRefGoogle Scholar
  23. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  24. Heiri O, Lotter AF (2010) How does taxonomic resolution affect chironomid-based temperature reconstruction? J Paleolimnol 44:589–601CrossRefGoogle Scholar
  25. Heiri O, Cremer H, Engels S, Hoek WZ, Peeters W, Lotter AF (2007) Lateglacial summer temperatures in the Northwest European lowlands: a chironomid record from Hijkermeer, the Netherlands. Quat Sci Rev 26:2420–2437CrossRefGoogle Scholar
  26. Hély C, Girardin MP, Ali AA, Carcaillet C, Brewer S, Bergeron Y (2010) Eastern boreal North American wildfire risk of the past 7000 years: a model-data comparison. Geophys Res Lett 37:L14709CrossRefGoogle Scholar
  27. Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–2072CrossRefGoogle Scholar
  28. Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL, Beklioglu M, Brucet S, Volta P, González-Bergonzoni I, Nielsen A (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73:84–107CrossRefGoogle Scholar
  29. Juggins S (2003) C2 Program. University of Newcastle, Newcastle upon TyneGoogle Scholar
  30. Juggins S (2015) Rioja: analysis of quaternary science data package for R. R package version 0.9-5. Available at http://cran.r-project.org/web/packages/rioja/index.html. Accessed 11 Feb 2016
  31. Korhola A, Vasko K, Toivonen HT, Olander H (2002) Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Quat Sci Rev 21:1841–1860CrossRefGoogle Scholar
  32. Langdon PG, Holmes N, Caseldine CJ (2008) Environmental controls on modern chironomid faunas from NW Iceland and implications for reconstructing climate change. J Paleolimnol 40:273–293CrossRefGoogle Scholar
  33. Langdon PG, Ruiz Z, Wynne S, Sayer CD, Davidson TA (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545CrossRefGoogle Scholar
  34. Larocque I (2001) How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 172:133–142CrossRefGoogle Scholar
  35. Larocque I (2008) Nouvelle fonction de transfert pour reconstruire la température à l'aide des chironomides préservés dans les sédiments lacustres. Institut national de la recherche scientifique, Centre Eau, Terre & EnvironnementGoogle Scholar
  36. Larocque I, Hall RI (2003) Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. J Paleolimnol 29:475–493CrossRefGoogle Scholar
  37. Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can J Fish Aquat Sci 63:1286–1297CrossRefGoogle Scholar
  38. Larocque I, Grosjean M, Heiri O, Bigler C, Blass A (2009) Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. J Paleolimnol 41:329–342CrossRefGoogle Scholar
  39. Larocque-Tobler I, Filipiak J, Tylmann W, Bonk A, Grosjean M (2016) Corrigendum to” Comparison between chironomid-inferred mean-August temperature from varved Lake Zabinskie (Poland) and instrumental data since 1896 AD”[Quat. Sci. Rev. 111 (2015) 35–50]. Quat Sci Rev 140:163–167CrossRefGoogle Scholar
  40. Learner MA, Wiles PR, Pickering JG (1989) The influence of aquatic macrophyte identity on the composition of the chironomid fauna in a former gravel pit in Berkshire, England. Aquat Insects 11:183–191CrossRefGoogle Scholar
  41. Luoto TP, Ojala AEK (2017) Meteorological validation of chironomids as a paleotemperature proxy using varved lake sediments. Holocene 27:870–878CrossRefGoogle Scholar
  42. Meerhoff M, Jeppesen E (2009) Shallow lakes and ponds. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Amsterdam, pp 645–655CrossRefGoogle Scholar
  43. Millet L, Rius D, Galop D, Heiri O, Brooks SJ (2012) Chironomid-based reconstruction of Lateglacial summer temperatures from the Ech palaeolake record (French western Pyrenees). Palaeogeogr Palaeoclimatol Palaeoecol 315:86–99CrossRefGoogle Scholar
  44. Mooij WM, Janse JH, Domis LNDS, Hülsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454CrossRefGoogle Scholar
  45. Overpeck JT, Webb T, Prentice IC (1985) quantitative interpretation of fossil pollen spectra—dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108CrossRefGoogle Scholar
  46. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg E, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365CrossRefGoogle Scholar
  47. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/. Accessed 11 Feb 2016
  48. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  49. Saucier J-P, Grondin P, Robitaille A, Gosselin J, Morneau C, Richard PJH, Brisson J, Sirois L, Leduc A, Morin H, Thiffault É, Gauthier S, Lavoie C, Payette S (2009) Écologie forestière. Chap 4 Man For Seconde Édition Ouvrage Collect Éditions. MultiMondes Ordre Ing For Qué Qué 2:165–315Google Scholar
  50. Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466CrossRefGoogle Scholar
  51. Smol JP (2016) Arctic and Sub-Arctic shallow lakes in a multiple-stressor world: a paleoecological perspective. Hydrobiologia 778:253–272CrossRefGoogle Scholar
  52. Tarkowska-Kukuryk M, Kornijów R (2008) Influence of spatial distribution of submerged macrophytes on Chironomidae assemblages in shallow lakes. Pol J Ecol 56:569–579Google Scholar
  53. Upiter LM, Vermaire JC, Patterson RT et al (2014) Middle to late Holocene chironomid-inferred July temperatures for the central Northwest Territories, Canada. J Paleolimnol 52:11–26CrossRefGoogle Scholar
  54. Viau AE, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330.  https://doi.org/10.1175/2008JCLI2342.1 CrossRefGoogle Scholar
  55. Viau AE, Gajewski K, Sawada MC, Fines P (2006) Millennial-scale temperature variations in North America during the Holocene. J Geophys Res 111:D09102CrossRefGoogle Scholar
  56. Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North American experience. Quat Sci Rev 25:1911–1925CrossRefGoogle Scholar
  57. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Elsevier, San DiegoGoogle Scholar
  58. Zhang E, Chang J, Cao Y, Tang H, Langdon P, Shulmeister J, Wang R, Yang X, Shen J (2017) A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China. Clim Past 13:185–199CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut de Recherche sur la forêt, Université du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  2. 2.Institut des Sciences de l’Évolution-Montpellier, UMR 5554, Université de Montpellier CNRS-IRD-EPHEMontpellierFrance
  3. 3.The L.A.K.E.S InstituteLyssSwitzerland
  4. 4.Département de Géographie and Centre d’études NordiquesUniversité LavalQuébecCanada
  5. 5.Centre d’Étude de la Forêt, Université du Québec à MontréalMontréalCanada
  6. 6.Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBEAix-en-ProvenceFrance

Personalised recommendations