Advertisement

Journal of Paleolimnology

, Volume 60, Issue 4, pp 543–551 | Cite as

Diatom responses to environmental changes in the Upper Paraná River floodplain (Brazil) during the last ~ 1000 years

  • Daiane Trevisan Ruwer
  • Marcelo Corrêa Bernardes
  • Liliana Rodrigues
Original paper
  • 246 Downloads

Abstract

The floodplain of the Upper Paraná River, Brazil, is strongly influenced by hydrology, which in turn affects geomorphological and environmental conditions, and controls the form of islands in the river. Such islands develop by deposition of river-borne sediment that creates small lateral sediment bars. Geomorphological processes can produce a variety of aquatic environments on such islands, e.g. channels, backwaters, lakes, transitional areas, and swamps. Our objective was to test whether subfossil diatoms preserved in the sediment on an island in the Upper Paraná River floodplain responded to changes in limnological conditions brought about by such geomorphological modifications. We hypothesized that the composition of diatom assemblages in the sediment shifted in response to past geomorphic, and hence limnological conditions. We analyzed diatom subfossils in a 2-m-long sediment core with a calibrated date near the base of 1047–1224 cal yr AD. Absence of diatoms at the bottom of the sequence was associated with the channel phase, followed by appearance of diatoms 1229–1381 cal yr AD that were adapted to flow, in the backwater phase. After another 100–200 years, presence of Eunotia species in the lake phase suggests a decrease in pH, phosphorus and nitrogen. Replacement of Eunotia spp. by Diadesmis species, following a transition phase, suggests different environmental conditions, with reduced water depth. Diatoms in surface deposits are distinct from assemblages in the other phases in the core and contain taxa that suggest a disturbed environment, with variations in water depth and flow. The data illustrate the importance of physical and hydrological factors in shaping diatom communities and show the utility of diatoms as bioindicators in this floodplain environment.

Keywords

Bioindicators Diatoms Environmental changes Fluvial island Guilds Paleolimnology 

Notes

Acknowledgements

We gratefully acknowledge the editor Mark Brenner and the referees for their valuable comments. We thank the Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) and the Complexo de Centrais de Apoio à Pesquisa (CONCAP) from the Universidade Estadual de Maringá (UEM) for supplying infrastructure. We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing na MS scholarship to Daiane Trevisan Ruwer, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a research productivity scholarship to Liliana Rodrigues. We also thank the Grupo de Estudos do Meio Ambiente (GEMA/UEM) and Drs. José Cândido Stevaux and Isabel Leli for providing samples and data. We thank Fabiano Oliveira for providing the geomorphology illustrations.

References

  1. Algarte VM, Dunck B, Leandrini JA, Rodrigues L (2016) Periphytic diatom ecological guilds in floodplain: ten years after dam. Ecol Indic 69:407–414CrossRefGoogle Scholar
  2. Bartozek ECR, Ludwig TAV, Tremarin PI, Nardelli MS, Bueno NC, Rocha ACR (2013) Diatoms (Bacillariophyceae) of Iguaçu National Park, Foz do Iguaçu, Brazil. Acta Bot Bras 27:108–123CrossRefGoogle Scholar
  3. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene paleoecology and paleohydrology. Wiley, New YorkGoogle Scholar
  4. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. Battarbee RW, Anderson NJ, Jeppesen E, Leavitt PR (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshw Biol 50:1772–1780CrossRefGoogle Scholar
  6. B-Béres V, Lukács A, Török P, Kókai Z, Novák Z, T-Krasznai E, Tóthmérész B, Bácsi I (2016) Combined eco-morphological functional groups are reliable indicators diatom. Ecol Indic 64:31–38CrossRefGoogle Scholar
  7. Cantonati M, Scola S, Angeli N, Guella G, Frassanito R (2009) Environmental controls of epilithic diatom depth distribution in an oligotrophic lake characterized by marked water-level fluctuations. Eur J Phycol 44:15–29CrossRefGoogle Scholar
  8. Comunello E, Souza Filho EE, Rocha PC, Nanni MR (2003) Dinâmica de inundação de áreas sazonalmente alagáveis na planície aluvial do Alto Rio Paraná: estudo preliminar. In: 11º Simpósio Brasileiro de Sensoriamento Remoto, São José dos Campos, pp 2459–2466Google Scholar
  9. Corradini FA, Stevaux JC, Fachini MP (2008) Geomorfologia e distribuição da vegetação ripária na ilha mutum, rio Paraná–PR/MG. Geociências (UNESP) 27:345–354Google Scholar
  10. Crossetii LO, Stenger-Kovács C, Padisák J (2013) Coherence of phytoplankton and attached diatom-based ecological status assessment in Lake Balaton. Hydrobiologia 716:87–101CrossRefGoogle Scholar
  11. Fernandez OVQ, Santos ML, Stevaux JC (1993) Evolução e características faciológicas de um conjunto de ilhas no rio Paraná, região de Porto Rico (PR). Boletim de Geografia (UEM) 1:5–15Google Scholar
  12. Ferrario ME, Sar EA, Sala SE (1995) Metodología básica para el estudio del fitoplanctoncon especial referência a las diatomeas. In: Alveal K, Ferrario ME (eds) Manual de métodos ficológicos. Ediciones Universidad de Concepción, ConcepciónGoogle Scholar
  13. Fontana L, Bicudo DC (2009) Diatomáceas (Bacillariophyceae) de sedimentos superficiais dos reservatórios em cascata do Rio Paranapanema (SP/PR, Brasil): Coscinodiscophyceae e Fragilariophyceae. Hoehnea 36:375–386CrossRefGoogle Scholar
  14. Fritz SC, Cummings BC, Gasse F, Laird KF (1999) Diatoms as indicators of hydrologic and climate change in saline lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 41–73CrossRefGoogle Scholar
  15. Gabito L, Bonilla S, Antoniales D (2013) Paleolimnological reconstruction of change in a subtropical lake: a comparison of the subfossil record to limnological data. Limnetica 32:175–188Google Scholar
  16. Grimm EC (1991) Tilia and Tilia graph. Illinois State Museum, Springfield, IllinoisGoogle Scholar
  17. Haworth EY (1976) Two late-glacial (Late Devensian) diatom assemblage profiles from northern Scotland. New Phytol 77:227–256CrossRefGoogle Scholar
  18. Hay MB, Michelutti N, Smol JP (2000) Ecological patterns of diatom assemblages from Mackenzie Delta lakes, Northwest Territories. Can J Bot 78:19–33Google Scholar
  19. Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):1889–1903CrossRefGoogle Scholar
  20. Kelly M, Juggins S, Guthrie R, Pritchard S, Jamieson J, Rippey B, Hirst H, Yallop M (2008) Assessment of ecological status in U.K. rivers using diatoms. Freshw Biol 53:403–422Google Scholar
  21. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1 teil: Naviculaceae. In: Ettl H, Gerloff J, Heyning H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Gustav Fisher, StuttgartGoogle Scholar
  22. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae 4. teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Linolatae) und Gomphonema. In: Ettl H, Gerloff J, Heyning H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Gustav Fisher, StuttgartGoogle Scholar
  23. Kuhn DL, Plafkin JL, Cairns J Jr, Lowe RL Jr (1981) Qualitative characterization of aquatic environments using diatom life-form strategies. Trans Am Microsc Soc 100:165–182CrossRefGoogle Scholar
  24. Lakatos M, Lange-Bertalot H, Büdel B (2004) Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in neotropical lowland rain forests. J Phycol 40:70–73CrossRefGoogle Scholar
  25. Leira M, Filippi ML, Cantonati M (2015) Diatom community response to extreme water-level fluctuations in two Alpine lakes: a core case study. J Paleolimnol 53:289–307CrossRefGoogle Scholar
  26. Leli IT, Stevaux JC, Assine ML (2017) Genesis and sedimentary record of blind channel and islands of the anabranching river: an evolution model. Geomorphology 302:35–45.  https://doi.org/10.1016/j.geomorph.2017.05.001 CrossRefGoogle Scholar
  27. Lotter A, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141CrossRefGoogle Scholar
  28. Moro RS, Fürstenberger CB (1997) Catálogo dos principais parâmetros ecológicos de diatomáceas não-marinhas. Ed UEPG, Ponta GrossaGoogle Scholar
  29. Passy SI (2007) Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat Bot 86:171–178CrossRefGoogle Scholar
  30. Rocha PC (2009) Os processos geomórficos e o estado de equilíbrio fluvial no alto Rio Paraná, centro sul do Brasil. Geosul 24:153–176CrossRefGoogle Scholar
  31. Round FE, Crawford RM, Mann DG (1990) The diatoms biology and morphology of the genera. Cambridge University Press, LondonGoogle Scholar
  32. Smith B, Wilson JB (2002) Community convergence: ecological and evolutionary. Folia Geobot 37:171–183CrossRefGoogle Scholar
  33. Soininen J (2007) Environmental and spatial control of freshwater diatoms—a review. Diatom Res 22:473–490CrossRefGoogle Scholar
  34. Souza Filho EE, Stevaux JC (1997) Geologia e geomorfologia do complexo Rio Baía, Curutuba, Ivinheima. In: Vazzoler AEAM, Agostinho AEAM, Hahn NS (eds) A planície de inundação do Alto Rio Paraná: aspectos físicos, biológicos e sócio-econômicos. EDUEM, Maringá, pp 3–46Google Scholar
  35. Stevaux JC (1994) The Upper Paraná River (Brazil): geomorphology, sedimentology and paleoclimatology. Quat Int 21:143–161CrossRefGoogle Scholar
  36. Stevenson RJ, Pan Y (1999) Assessing environmental conditions in rivers and streams with diatoms. In: Stoemer EF, Smol JP (eds) The diatoms: applications to the environmental and earth sciences. Cambridge University Press, Cambridge, pp 11–40CrossRefGoogle Scholar
  37. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 ‘4C age calibration program. In: Stuiver M, Long A, Kra RS (eds) Calibration 1993. Radiocarbon 35(1):215–230Google Scholar
  38. Tauro F, Martínez-Carreras N, Barnich F, Juilleret J, Wetzel CE, Ector L, Hissler C, Pfister L (2015) Diatom percolation through soils: a proof of concept laboratory experiment. Ecohydrology 9:753–764CrossRefGoogle Scholar
  39. Torgan LC, Santos CB (2008) Diadesmis confervacea (Diadesmiaceae-Bacillariophyta): morfologia externa, distribuição e aspectos ecológicos. Iheringia Ser Bot 63:171–176Google Scholar
  40. Tremarin PI, Wetzel CE, Ludwig TAV, Ector L (2011) Encyonema exuberans sp. nov. (Bacillariophyceae) from southern Brazilian lotic systems. Nova Hedwig 92:107–120CrossRefGoogle Scholar
  41. Vélez MI, Berrío JC, Hooghiemstra H, Metcalfe S, Marchant R (2005) Palaeoenvironmental changes during the last ca. 8590 calibrated yr (7800-radiocarbon yr) in the dry forest ecosystem of the Patía Valley, Southern Colombian Andes: a multiproxy approach. Palaeogeogr Palaeoclimatol Palaeoecol 216:279–302CrossRefGoogle Scholar
  42. Wetzel CE, Ector L (2014) Taxonomy, distribution and autecology of Planothidium bagualensis sp. nov. (Bacillariophyta) a common monoraphid species from southern Brazilian rivers. Phytotaxa 156:201–210CrossRefGoogle Scholar
  43. Zhang S, Lu XX, Higgitt DL, Chen C-TA, Han J, Sun H (2008) Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Glob Planet Change 60:365–380CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Postgraduate Course in Ecology of Continental Aquatic Environments - PEAMaringá State UniversityMaringáBrazil
  2. 2.Postgraduate in Geochemistry, Institute of ChemistryFederal Fluminense UniversityNiteróiBrazil
  3. 3.Department of Biology, Nupélia, PEAMaringá State UniversityMaringáBrazil

Personalised recommendations