Advertisement

Journal of Paleolimnology

, Volume 60, Issue 4, pp 525–541 | Cite as

Within versus between-lake variability of sedimentary diatoms: the role of sampling effort in capturing assemblage composition in environmentally heterogeneous shallow lakes

  • Gabriela S. Hassan
Original paper
  • 267 Downloads

Abstract

The effect of within-lake diatom assemblages variability on sample representativity and its subsequent impact on between-lake comparisons were addressed in three environmentally heterogeneous shallow lakes from the Argentinean Pampas. Surface sediment samples were collected from the open waters and the highly vegetated littoral areas on a seasonal basis and analyzed for diatom assemblages composition. Within-lake variability was assessed by comparing the Bray Curtis distances between original data and the Monte Carlo-simulated average assemblages composition through non-metric multidimensional scaling (NMDS). Diatom assemblages showed a high variability in composition, evidencing large dispersions of samples around the centroid in NMDS plots. Permutational multivariate analysis of variance tests signaled significant differences in average composition between the three lakes, related mainly to their differences in conductivity and depth. Representativity of original samples was assessed through principal coordinates analyses ordinations of the three lakes, being samples lying in the overlapping areas of the plot classified as poor representatives of between-lake differences. Several samples, both from littoral and open waters, were classified as poor representatives through this method. Simulation allowed us to evaluate the effect of sample replication on improving between-lake comparisons, and showed that collecting two littoral and two open-water samples allowed us to faithfully capture differences in average composition among the three lakes. Hence, the results suggest that using a single sample to estimate diatom assemblages composition in these lakes should be avoided, as it fails to capture between-lake differences, leading to biases in compositional comparisons among lakes and regions. Consequently, including multiple samples from each lake when constructing calibration sets would be the best option to obtain reliable paleoenvironmental reconstructions from single sediment cores in these environmentally heterogeneous shallow lakes.

Keywords

Diatoms Within-lake variability Between-lake variability Representativeness Surface sediment samples Pampas 

Notes

Acknowledgements

Financial support for this study was provided by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-2727). I am indebted to Pedro Urrutia, Héctor Sanabria and Santiago González Aguilar for permission to sample on the lakes. C.G. De Francesco made helpful comments on earlier versions of this manuscript. I thank Dr. T.J. Whitmore, Dr. S. Juggins, Dr. S. Adler and one anonymous reviewer for their valuable comments which improved substantially the manuscript. G. Hassan is a member of the Scientific Research Career of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Supplementary material

10933_2018_38_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 67 kb)
10933_2018_38_MOESM2_ESM.docx (1.2 mb)
Supplementary material 2 (DOCX 1217 kb)
10933_2018_38_MOESM3_ESM.docx (51 kb)
Supplementary material 3 (DOCX 50 kb)

References

  1. Adler S, Hübener T (2007) Spatial variability of diatom assemblages in surface lake sediments and its implications for transfer functions. J Paleolimnol 37:573–590CrossRefGoogle Scholar
  2. Anderson NJ (1990) Variability of sediment diatom assemblages in an upland, wind-stressed lake (Loch Fleet, Galloway, S.W. Scotland). J Paleolimnol 4:43–59CrossRefGoogle Scholar
  3. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693CrossRefGoogle Scholar
  4. Barker TOM, Irfanullah HM, Moss B (2010) Micro-scale structure in the chemistry and biology of a shallow lake. Fresh Biol 55:1145–1163CrossRefGoogle Scholar
  5. Bennett JR, Sisson DR, Smol JP, Cumming BF, Possingham HP, Buckley YM (2014) Optimizing taxonomic resolution and sampling effort to design cost-effective ecological models for environmental assessment. J Appl Ecol 51:1722–1732CrossRefGoogle Scholar
  6. Bennington JB, Rutherford SD (1999) Precision and reliability in paleocommunity comparisons based on cluster-confidence intervals; how to get more statistical bang for your sampling buck. Palaios 14:506–515CrossRefGoogle Scholar
  7. Bennion H, Sayer CD, Tibby J, Carrick HJ (2010) Diatoms as indicators of environmental change in shallow lakes. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, New York, pp 152–173CrossRefGoogle Scholar
  8. Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  9. Birks HJB (2012) Overview of numerical methods in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Springer, Dordretcht, pp 19–92CrossRefGoogle Scholar
  10. Birks HJB, Birks HH (1980) Quaternary palaeoecology. University Park Press, BaltimoreGoogle Scholar
  11. Blais JM, Kalff J (1995) The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40:582–588CrossRefGoogle Scholar
  12. Bohn VY, Perillo GME, Piccolo M (2011) Distribution and morphometry of shallow lakes in a temperate zone (Buenos Aires Province, Argentina). Limnetica 30:89–102Google Scholar
  13. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  14. Bunbury J, Gajewski K (2008) Does a one point sample adequately characterize the lake environment for paleoenvironmental calibration studies? J Paleolimnol 39:511–531CrossRefGoogle Scholar
  15. Cao Y, Williams DD, Larsen DP (2002a) Comparison of ecological communities: the problem of sample representativeness. Ecol Monogr 72:41–56CrossRefGoogle Scholar
  16. Cao Y, Larsen DP, Hughes RM, Angermeier PL, Patton TM (2002b) Sampling effort affects multivariate comparisons of stream assemblages. J North Am Benthol Soc 21:701–714CrossRefGoogle Scholar
  17. Cao Y, Hawkins CP, Larsen DP, Van Sickle J (2007) Effects of sample standardization on mean species detectabilities and estimates of relative differences in species richness among assemblages. Am Nat 170:381–395CrossRefGoogle Scholar
  18. Černá K (2010) Small-scale spatial variation of benthic algal assemblages in a peat bog. Limnologica 40:315–321CrossRefGoogle Scholar
  19. Charles DF, Dixit SS, Cumming BF, Smol JP (1991) Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, USA. J Paleolimnol 5:267–284CrossRefGoogle Scholar
  20. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  21. Cristini PA, Tietze E, De Francesco CG, Martínez DE (2017) Water geochemistry of shallow lakes from the southeastern Pampa plain, Argentina and their implications on mollusk shells preservation. Sci Tot Environ 603:155–166CrossRefGoogle Scholar
  22. De Nicola DM (1986) The representation of living diatom communities in deep-water sedimentary diatom assemblages in two Maine (U.S.A.) lakes. In: Smol JP, Battarbee RW, Davis RB, Meriläinen J (eds) chapter 7, Diatoms and lake acidity. Dr W Junk Publishers, Dordrecht, pp 73–85Google Scholar
  23. Dennis B, Ponciano JM, Taper ML (2010) Replicated sampling increases efficiency in monitoring biological populations. Ecology 91:610–620CrossRefGoogle Scholar
  24. Diovisalvi N, Baigu C, Bohn VY, Piccolo MC, Perillo GME, Zagarese HE (2015) Shallow lakes from the Central Plains of Argentina: an overview and worldwide comparative analysis of their basic limnological features. Hydrobiologia 752:5–20CrossRefGoogle Scholar
  25. Dixit SS, Evans RD (1986) Spatial variability in sedimentary algal microfossils and its bearing on diatom-inferred pH reconstructions. Can J Fish Aquat Sci 43:1836–1845CrossRefGoogle Scholar
  26. Earle JC, Duthie HC, Glooschenko WA, Hamilton PB (1988) Factors affecting the spatial distribution of diatoms on the surface sediments of three Precambrian Shield lakes. Can J Fish Aquat Sci 45:469–478CrossRefGoogle Scholar
  27. Eggermont H, De Deyne P, Verschuren D (2007) Spatial variability of chironomid death assemblages in the surface sediments of a fluctuating tropical lake (Lake Naivasha, Kenya). J Paleolimnol 38:309–328CrossRefGoogle Scholar
  28. Federman M (2003) Mapeo y caracterización de la comunidad de macrófitas en tres lagos someros del sudeste bonaerense. Tesis de grado de la licenciatura en Ciencias Biológicas. Universidad Nacional de Mar del Plata. ArgentinaGoogle Scholar
  29. Frey D (1988) Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J Paleolimnol 1:179–191Google Scholar
  30. García-Rodríguez F, Piovano E, del Puerto L, Inda H, Stutz S, Bracco R, Panario D, Córdoba F, Sylvestre F, Ariztegui D (2009) South American lake paleo-records across the Pampean Region. PAGES News 17:115–118CrossRefGoogle Scholar
  31. Gilbert R, Lamoureux S (2004) Processes affecting deposition of sediment in a small, morphologically complex lake. J Paleolimnol 31:37–48CrossRefGoogle Scholar
  32. González-Sagrario MA, Rodríguez Golpe D, La Sala L, Sánchez Vuichard G, Minottic P, Panarello H (2018) Lake size, macrophytes, and omnivory contribute to food web linkage in temperate shallow eutrophic lakes. Hydrobiologia 818:87–103CrossRefGoogle Scholar
  33. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis: palaeontologia electronica, 4, no. 1, 184 Kb, http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  34. Hassan GS (2015) On the benefits of being redundant: low compositional fidelity of diatom death assemblages does not hamper the preservation of environmental gradients in shallow lakes. Paleobiology 41:154–173CrossRefGoogle Scholar
  35. Hassan GS, De Francesco CG (2018) Preservation of Cyclotella meneghiniana Kützing (Bacillariophyceae) along a continental salinity gradient: implications for diatom-based paleoenvironmental reconstructions. Ameghiniana.  https://doi.org/10.5710/AMGH.20.11.2017.3144 CrossRefGoogle Scholar
  36. Heggen MP, Birks HH, Heiri O, Grytnes JA, Birks HJB (2012) Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains? J Paleolimnol 48:669–691CrossRefGoogle Scholar
  37. Heiri O, Birks HJB, Brooks SJ, Velle G, Willassen E (2003) Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 199:95–106CrossRefGoogle Scholar
  38. Jones VJ, Flower RJ (1986) Spatial and temporal variability in periphytic diatom communities: palaeoecological significance in an acified lake. In: Smol JP, Battarbee RW, Davis RB, Meriläinen J (eds) Diatoms and lake acidity. Dr W Junk Publishers, Dordrecht, pp 87–94CrossRefGoogle Scholar
  39. Juggins S, Birks HJB (2012) Quantitative environmental reconstructions from biological data. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change. Springer, Netherlands, pp 431–494Google Scholar
  40. Kelly MG (2001) Use of similarity measures for quality control of benthic diatom samples. Water Res 35:2784–2788CrossRefGoogle Scholar
  41. Kidwell SM (2002) Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803–806CrossRefGoogle Scholar
  42. Krammer K, Lange-Bertalot H (1997) Bacillariophyceae 2. Teil: Bacillariophyceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, 2/2 edn. Spektrum Akademischer Verlag, Stuttgart, p 610Google Scholar
  43. Krammer K, Lange-Bertalot H (1999) Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, 2/1 edn. Spektrum Akademischer Verlag, Stuttgart, p 876Google Scholar
  44. Krammer K, Lange-Bertalot H (2004a) Bacillariophyceae 3. Teil: Centrales; Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, 2/3 edn. Spektrum Akademischer Verlag, Stuttgart, p 596Google Scholar
  45. Krammer K, Lange-Bertalot H (2004b) Bacillariophyceae 4. Teil: Bacillariophyceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, 2/4 edn. Spektrum Akademischer Verlag, Stuttgart, p 596Google Scholar
  46. Lange-Bertalot H, Külbs K, Lauser T, Nörpel-Schempp M, Willmann M (1996) Diatom taxa introduced by Georg Krasske documentation and revision. Iconogr Diatomol 3:1–358Google Scholar
  47. Ledger M, Hildrew AG (1998) Temporal and spatial variation in the epilithic biofilm of an acid stream. Freshw Biol 40:655–670CrossRefGoogle Scholar
  48. Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Springer, Dordrecht, pp 201–248CrossRefGoogle Scholar
  49. Levkov Z (2009) Amphora sensu lato. In: Lange-Bertalot H (ed) Diatoms of Europe: diatoms of European inland waters and comparable habitats, vol 5. ARG GantnerVerlag KG, Ruggell, p 916Google Scholar
  50. Link WA, Barker RJ, Sauer JR, Droege S (1994) Within-site variability in surveys of wildlife populations. Ecology 75:1097–1108CrossRefGoogle Scholar
  51. Magurran AE (2004) Measuring biological diversity. Blackwell, London, p 132Google Scholar
  52. Metzeltin D, Lange-Bertalot H (1998) Tropical diatoms of South America I. About 700 predominantly rarely known or new taxa representative of the neotropical flora. Iconogr Diatomol 5:1–695Google Scholar
  53. Metzeltin D, Lange-Bertalot H (2007) Tropical diatoms of South America II. Special remarks on biogeographic disjunction. Iconogr Diatomol 18:1–876Google Scholar
  54. Metzeltin D, Lange-Bertalot H, García-Rodríguez F (2005) Diatoms of Uruguay compared with other taxa from South America and elsewhere. Iconogr Diatomol 15:1–736Google Scholar
  55. Moreno-Ostos E, Cruz-Pizarro L, Basanta A, Glen G (2008) The spatial distribution of different phytoplankton functional groups in a Mediterranean reservoir. Aquat Ecol 42:115–128CrossRefGoogle Scholar
  56. Oksanen JF, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner S (2013) Vegan: community ecology package. R package, Version 2. 0–7. http://CRAN.R-project.org/package=vegan. Accessed 17 Jun 2015
  57. Overpeck JT, Webb T, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra—dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108CrossRefGoogle Scholar
  58. Passy SI (2001) Spatial paradigms of lotic diatom distribution: a landscape ecology perspective. J Phycol 37:370–378CrossRefGoogle Scholar
  59. Podani J, Czárán T, Bartha S (1993) Pattern, area and diversity: the importance of spatial scale in species assemblages. Abst Bot 17:37–51Google Scholar
  60. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org
  61. Rojas L, Hassan GS (2017) Distribution of epiphytic diatoms on five macrophytes from a Pampean shallow lake: host-specificity and implications for paleoenvironmental reconstructions. Diat Res 32:263–275CrossRefGoogle Scholar
  62. Rumrich U, Lange-Bertalot H, Rumrich M (2000) Diatoms of the Andes. From Venezuela to Patagonia/Tierra del Fuego. Iconogr Diatomol 9:1–673Google Scholar
  63. Sar EA, Sala SE, Sunesen I, Henninger S, Montastrut M (2009) Catálogo de los géneros, especies y taxa intraespecíficos erigidos por J. Frenguelli. In: Witkowski A (ed) Diatom monographs, vol 10. Koeltz Scientific Books, Koenigstein, p 419Google Scholar
  64. Schmera D, Eros T (2006) Estimating sample representativeness in a survey of stream caddisfly fauna. Ann Limnol 42:181–187CrossRefGoogle Scholar
  65. Smol J (1992) Paleolimnology: an important tool for effective ecosystem management. J Aquat Ecosyst Health 1:49–58CrossRefGoogle Scholar
  66. Snoeijs P, Weckström K (2010) Diatoms and environmental change in large brackish-water Ecosystems. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, New York, pp 287–308CrossRefGoogle Scholar
  67. Soininen J (2003) Heterogeneity of benthic diatom communities in different spatial scales and current velocities in a turbid river. Arch Hydrobiol 156:551–564CrossRefGoogle Scholar
  68. Sommer U (2000) Benthic microalgal diversity enhanced by spatial heterogeneity of grazing. Oecologia 122:284–287CrossRefGoogle Scholar
  69. Stevenson RJ, Singer R, Roberts DA, Boylen CW (1985) Patterns of epipelic algal abundance with depth, trophic status, and acidity in poorly buffered New Hampshire lakes. Can J Fish Aquat Sci 42:1501–1512CrossRefGoogle Scholar
  70. Stutz S, Tonello M, González-Sagrario MA, Navarro D, Fontana S (2014) Historia ambiental de los lagos someros de la llanura Pampeana (Argentina) desde el Holoceno medio: inferencias paleoclimáticas. Lat Am J Sed Bas Anal 21:119–138Google Scholar
  71. ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiolgia 269(270):485–502CrossRefGoogle Scholar
  72. ter Braak CJF, Looman CWN (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:3–11CrossRefGoogle Scholar
  73. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317CrossRefGoogle Scholar
  74. Tietze E, De Francesco CG (2017) Compositional fidelity and taphonomy of freshwater mollusks from three pampean shallow lakes of Argentina. Ameghiniana 54:208–226CrossRefGoogle Scholar
  75. Tomasových A, Kidwell SM (2011) Accounting for the effects of biological variability and temporal autocorrelation in assessing the preservation of species abundance. Paleobiology 37:332–354CrossRefGoogle Scholar
  76. Weilhoefer C, Pan Y (2006) Diatom-based bioassessment in wetlands: how many samples do we need to characterize the diatom assemblage in a wetland adequately? Wetlands 26:793–802CrossRefGoogle Scholar
  77. Wetzel R (2001) Limnology: lake and river ecosystems. Academic Press, San Diego, p 1006Google Scholar
  78. Whitmore T, Brenner M, Schelske CL (1996) Highly variable sediment distribution in shallow, wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. J Paleolimnol 15:207–221CrossRefGoogle Scholar
  79. Wickham H (2016) Plyr: Tools for Splitting, Applying and Combining Data. R package, Version 1. 8.4. http://CRAN.R-project.org/package=plyr. Accessed 23 Oct 2017
  80. Wolfe AP (1996) Spatial patterns of modern diatom distribution and multiple paleolimnological records from a small arctic lake on Baffin Island, Arctic Canada. Can J Bot 74:435–449CrossRefGoogle Scholar
  81. Zar JH (2010) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones Marinas y Costeras (IIMyC), Anexo Facultad de Ciencias Exactas y NaturalesCONICET-Universidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations