Journal of Paleolimnology

, Volume 60, Issue 2, pp 109–116 | Cite as

Towards better integration of ecology in palaeoecology: from proxies to indicators, from inference to understanding

  • Thomas A. Davidson
  • Helen Bennion
  • Michael Reid
  • Carl D. Sayer
  • Thomas J. Whitmore
Original paper


The special issue titled “Putting the Ecology into Palaeoecology” stems from a session with that name that was held at the 2015 International Paleolimnological Association meeting (International Paleolimnology Symposium) in Lanzhou, China. We briefly describe the motivation for the session, and summarise the contributions to this special issue. Additionally, we discuss our perceptions and concerns about the progress, challenges and future directions of palaeolimnology, stressing the importance of meaningful integration of ecological principles and thinking into palaeoapproaches.


Palaeoecology Early warning indicators Transfer functions Ecology Proxy 


  1. Anderson N (1997) Historical changes in epilimnetic phosphorus concentrations in six rural lakes in Northern Ireland. Freshw Biol 38:427–440CrossRefGoogle Scholar
  2. Battarbee RW, Anderson NJ, Jeppesen E, Leavitt PR (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshw Biol 50:1772–1780CrossRefGoogle Scholar
  3. Bayley S, Creed I, Sass G, Wong A (2007) Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: alternative “unstable” states? Limnol Oceanogr 52:2002–2012CrossRefGoogle Scholar
  4. Bennion H, Juggins S, Andersons N (1996) Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environ Sci Technol 30:2004–2007CrossRefGoogle Scholar
  5. Bennion H, Carvalho L, Sayer CD, Simpson GL, Wischnewski J (2012) Identifying from recent sediment records the effects of nutrients and climate on diatom dynamics in Loch Leven. Freshw Biol 57:2015–2029CrossRefGoogle Scholar
  6. Bennion H, Davidson TA, Sayer CD, Simpson GL, Rose NL, Sadler JP (2015) Harnessing the potential of the multi-indicator palaeoecological approach: an assessment of the nature and causes of ecological change in a eutrophic shallow lake. Freshw Biol 60:1423–1442CrossRefGoogle Scholar
  7. Davidson T, Sayer C, Perrow M, Bramm M, Jeppesen E (2010) The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshw Biol 55:546–564CrossRefGoogle Scholar
  8. Davidson TA, Bennion H, Jeppesen E, Clarke GH, Sayer CD, Morley D, Odgaard BV, Rasmussen P, Rawcliffe R, Salgado J, Simpson GL, Amsinck SL (2011) The role of cladocerans in tracking long-term change in shallow lake trophic status. Hydrobiologia 676:299–315CrossRefGoogle Scholar
  9. Davidson TA, Reid MA, Sayer CD, Chilcott S (2013) Palaeolimnological records of shallow lake biodiversity change: exploring the merits of single versus multi-proxy approaches. J Paleolimnol 49:431–446CrossRefGoogle Scholar
  10. Fritz S, Kingston J, Engstrom DR (1993) Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshw Biol 30:1–23CrossRefGoogle Scholar
  11. Gregory-Eaves I, Beisner BE (2011) Palaeolimnological insights for biodiversity science: an emerging field. Freshw Biol 56:2653–2661CrossRefGoogle Scholar
  12. Hilt S, Köhler J, Adrian R, Monaghan MT, Sayer CD (2013) Clear, crashing, turbid and back—long-term changes in macrophyte assemblages in a shallow lake. Freshw Biol 58(10):2027–2036CrossRefGoogle Scholar
  13. Hobbs WO, Zimmer KD, Thiessen K, Edlund M, Michelutti N, Butler MG, Hanson MA, Carlson T (2012) A 200-year perspective on alternative stable state theory and lake management from a bio manipulated shallow lake. Ecol Appl 22:1483–1496CrossRefGoogle Scholar
  14. Jeppesen E, Leavitt PR, de Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198CrossRefGoogle Scholar
  15. Kirilova EP, Bluszcz P, Heiri O, Cremer H, Ohlendorf C, Lotter AF, Zolitschka B (2008) Seasonal and interannual dynamics of diatom assemblages in Sacrower See (NE Germany): a sediment trap study. Hydrobiologia 614:159–170CrossRefGoogle Scholar
  16. Köster D, Pienitz R (2006) Seasonal diatom variability and paleolimnological inferences—a case study. J Paleolimnol 35:395–416CrossRefGoogle Scholar
  17. Leavitt P, Carpenter S, Kitchell J (1989) Whole-lake experiments: the annual record of fossil pigments and zooplankton. Limnol Oceanogr 34:700–717CrossRefGoogle Scholar
  18. Madgwick G, Emson D, Sayer CD, Willby NJ, Rose NL, Jackson MJ, Kelly A (2011) Centennial-scale changes to the aquatic vegetation structure of a shallow eutrophic lake and implications for restoration. Freshw Biol 56:2620–2636CrossRefGoogle Scholar
  19. McQuoid MR, Hobson LA (1997) A 91-year record of seasonal and interannual variability of diatoms from laminated sediments in Saanich Inlet, British Columbia. J Plankton Res 19:173–194CrossRefGoogle Scholar
  20. Ogden RW (2000) Modern and historical variation in aquatic macrophyte cover of billabongs associated with catchment development. Regul River 16:497–512CrossRefGoogle Scholar
  21. Pennington W (1981) Records of a lake’s life in time: the sediments. Hydrobiologia 79:197–215CrossRefGoogle Scholar
  22. Randsalu-Wendrup L, Conley DJ, Carstensen J, Hansson L-A, Brönmark C, Fritz SC, Choudhary P, Routh J, Hammarlund D (2014) Combining limnology and palaeolimnology to investigate recent regime shifts in a shallow, eutrophic lake. J Paleolimnol 51:437–448CrossRefGoogle Scholar
  23. Reid MA, Ogden RW (2006) Trend, variability or extreme event? The importance of long-term perspectives in river ecology. River Res Appl 22:167–177CrossRefGoogle Scholar
  24. Sayer C (2001) Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English lake. Freshw Biol 46:743–757CrossRefGoogle Scholar
  25. Sayer CD, Davidson TA, Jones J, Langdon P (2010a) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw Biol 55:487–499CrossRefGoogle Scholar
  26. Sayer CD, Burgess A, Kari K, Davidson TA, Peglar S, Yang H, Rose NL (2010b) Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshw Biol 55:565–583CrossRefGoogle Scholar
  27. Sayer CD, Davidson TA, Jones J (2010c) Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshw Biol 55:500–513CrossRefGoogle Scholar
  28. Sayer CD, Davidson TA, Rawcliffe R, Langdon PG, Leavitt PR, Cockerton G, Rose NL, Croft T (2016) Consequences of fish kills for long-term trophic structure in shallow lakes: implications for theory and restoration. Ecosystems 19:1289–1309CrossRefGoogle Scholar
  29. Scheffer M, Carpenter S (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656CrossRefGoogle Scholar
  30. Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279CrossRefGoogle Scholar
  31. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59CrossRefGoogle Scholar
  32. Smol JP (1991) Are we building enough bridges between paleolimnology and aquatic ecology? Hydrobiologia 214:201–206CrossRefGoogle Scholar
  33. Spears BM, Futter MN, Jeppesen E, Huser BJ, Ives S, Davidson TA, Adrian R, Angeler DG, Burthe SJ, Carvalho L, Daunt F, Gsell AS, Hessen DO, Janssen ABG, Mackay EB, May L, Moorhouse H, Olsen S, Søndergaard M, Woods H, Thackeray SJ (2017) Ecological resilience in lakes and the conjunction fallacy. Nat Ecol Evol 1:1616–1624CrossRefGoogle Scholar
  34. Vadeboncoeur Y, Jeppesen E, Vander Zanden MJ, Schierup HH, Christoffersen K, Lodge DM (2003) From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–1418CrossRefGoogle Scholar
  35. Velle G, Brodersen KP, Birks HJB, Willassen E (2010) Midges as quantitative temperature indicator species: lessons for palaeoecology. The Holocene 20:989–1002CrossRefGoogle Scholar
  36. Wang R, Dearing JA, Langdon PG, Zhang E, Yang X, Dakos V, Scheffer M (2012) Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492:419–422CrossRefGoogle Scholar
  37. Whitmore TJ, Lauterman FM, Smith KE, Riedinger-Whitmore MA (2015) Limnetic total phosphorus transfer functions for lake management: considerations about their design, use, and effectiveness. Front Ecol Evol 3:147–149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Thomas A. Davidson
    • 1
  • Helen Bennion
    • 2
  • Michael Reid
    • 3
  • Carl D. Sayer
    • 2
  • Thomas J. Whitmore
    • 4
  1. 1.Department of Bioscience and Arctic Research Centre (ARC)Aarhus UniversitySilkeborgDenmark
  2. 2.Environmental Change Research Centre, Department of GeographyUniversity College LondonLondonUK
  3. 3.Riverine Landscapes Research Laboratory, Geography and PlanningUniversity of New EnglandArmidaleAustralia
  4. 4.Deparment of Biological SciencesUniversity of South Florida St. PetersburgSt. PetersburgUSA

Personalised recommendations