Advertisement

Journal of Paleolimnology

, Volume 60, Issue 3, pp 427–443 | Cite as

Diatom-based reconstruction of Holocene hydrological changes along the Colorado River floodplain (northern Patagonia, Argentina)

  • Rocío Fayó
  • Marcela A. Espinosa
  • Camilo A. Vélez-Agudelo
  • Jerónimo Pan
  • Federico I. Isla
Original paper
  • 78 Downloads

Abstract

Diatom assemblages recovered from a Colorado River delta core in northern Patagonia, Argentina were analyzed in order to assess past environmental conditions. A total of 35 samples were selected from a 172-cm core extracted 37 km from the mouth (39°36′19.6″S; 62°29′26.1″W). One-hundred and thirty-eight taxa were recognized and grouped according to life forms. Two diatom zones were identified by cluster analysis. At the base of the sequence, the Diatom Zone I (DZI; 4132 ± 35 − 2919 ± 27 14C yr BP), consisted of clays, and was characterized by assemblages dominated by aerophilous and benthic taxa and chrysophyte stomatocysts, which led to inferences of a sedimentary environment corresponding to a pond experiencing dry periods. The upper section (DZII) was dominated by fine sands and silts encompassing the last ~ 150 yr with abundant planktonic and tychoplanktonic diatoms. Benthic diatoms were abruptly replaced by planktonic forms in this zone indicating a shift to deeper waters. These results characterize the meandering dynamics of a deltaic system. During the Mid-Holocene, more arid periods would have favored the deactivation of meanders and the formation of riverine and oxbow wetlands. In Late-Holocene and historical times, more humid conditions and the hydrological system across the floodplain reactivated the paleochannel. Today, the dominant diatom species are brackish/freshwater fragilaroids. A non-multidimensional scaling analysis showed a lack of analogy between fossil and modern samples. The change in diatom floras in recent historical times was attributed to anthropogenic disturbances, a consequence of the regulation of the river flow. This regulation is evidenced by less discharge, morphological modifications in the floodplain and increased salinity in the last decade.

Keywords

Diatoms Paleoenvironmental changes Oxbow wetland Holocene Northern Patagonia Argentina 

Notes

Acknowledgements

The authors acknowledge the help of K. Miglioranza during the extraction of the core; E. Vouchard and J. M. Guerrero (Museo La Plata) contributed to the identification of taxa; M. Albisetti and M. Quiroz collaborated with the design of maps. This work is part of R. Fayó’s Doctoral Thesis (UNMdP). Financial support was provided by Secretaría de Ambiente y Desarrollo Sustentable within the PNUD program (BC42) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 1146/16).

References

  1. Abraham de Vázquez EM, Garleff K, Liebricht H, Regairaz AC, Schäbitz F, Squeo FA, Stingl H, Veit H, Villagran C (2000) Geomorphology and paleoecology of the arid diagonal in southern South America. Z Angew Geol 1:55–61Google Scholar
  2. Akter J, Sarker MH, Popescu I, Roelvink D (2015) Evolution of the Bengal Delta and its prevailing processes. J Coastal Res 32:1212–1226Google Scholar
  3. Alcalde R (2014) Programa integral de calidad del agua del río Colorado—Calidad del medio acuático. COIRCO (Comité Interjurisdiccional del río Colorado), Secretaría de Energía de la Nación, Grupo Interempresario, Argentina, p 396Google Scholar
  4. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol J, Birks H (eds) Tracking environmental change using lake sediments: terrestrial, algal, and siliceous indicators. Springer, Berlin, pp 155–202Google Scholar
  5. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  6. Bhattacharya R, Hausmann S, Hubeny JB, Gell P, Black JL (2016) Ecological response to hydrological variability and catchment development: insights from a shallow oxbow lake in Lower Mississippi Valley, Arkansas. Sci Total Environ 569–570:1087–1097CrossRefGoogle Scholar
  7. Biasotti AE, Álvarez SB, Bazán GI, Martínez de Fabricius AL (2014) Variación estacional de la comunidad microfitoplactónica del curso medio del río Colorado (La Pampa-Argentina). Biol Acuát 30:249–258Google Scholar
  8. Bicudo DC, Tremarin PI, Almeida PD, Zorzal-Almeida S, Wengrat S, Faustino SB, Costa LF, Bartozek EC, Rocha AC, Bicudo CE (2016) Ecology and distribution of Aulacoseira species (Bacillariophyta) in tropical reservoirs from Brazil. Diatom Res 31:199–215CrossRefGoogle Scholar
  9. Bird BW, Abbott MB, Vuille M, Rodbell DT, Stansell ND, Rosenmeier MF (2011) A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci 108:8583–8588CrossRefGoogle Scholar
  10. Bonilla S (1997) Composición y abundancia fitoplanctónica de tres embalses en cadena sobre el Río Negro, Uruguay. Iheringia Ser Bot 49:47–61Google Scholar
  11. Bonomo M, Zucol AF, Gutiérrez Téllez B (2009) Late Holocene palaeoenvironments of the Nutria Mansa 1 archaeological site, Argentina. J Paleolimnol 41:273–296CrossRefGoogle Scholar
  12. Cappannini DA, Flores RR (1966) Los suelos del valle inferior del río Colorado. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, p 127Google Scholar
  13. Charó MP, Fucks EE, Gordillo S (2015) Late PleistoceneeRecent marine malacological assemblages of the Colorado River delta (south of Buenos Aires Province): paleoecology and paleoclimatology. Quatern Int 377:52–70CrossRefGoogle Scholar
  14. COIRCO (2016) Comité Interjurisdiccional del Río Colorado.Programas de calidad del medio acuático (online). http://www.coirco.gov.ar/centro-de-documentacion/. Accessed 17 November 2016
  15. Coronato AM, Coronato F, Mazzoni E, Vázquez M (2008) The physical geography of Patagonia and Tierra del Fuego. Dev Quat Sci 11:13–55Google Scholar
  16. Dawidek J, Ferencz B (2012) Hydrological processes in the riverine systems, the origin and classifications of floodplain lajes. Ekológia (Bratislava) 31(3):331–340Google Scholar
  17. De Fabricius ALM, Maidana N, Gómez N, Sabater S (2003) Distribution patterns of benthic diatoms in a Pampean river exposed to seasonal floods: the Cuarto River (Argentina). Biodivers Conserv 12:2443–2454CrossRefGoogle Scholar
  18. del Puerto L, García-Rodríguez F, Inda H, Bracco R, Castiñeira C, Adams JB (2006) Paleolimnological evidence of Holocene climatic changes in Lake Blanca, southern Uruguay. J Paleolimnol 36:151–163CrossRefGoogle Scholar
  19. Denys L (1991/1992) A check-list of the diatoms in the Holocene deposits of the Western Belgian coastal plain with the survey of their apparent ecological requirements. Introduction, ecological code and complete list. Geological Service of Belgium, Professional Paper 246:1–41Google Scholar
  20. Development Core Team R (2015) R: language and environmental for statistical computing. R Foundation for Statistical Computing Viena, Austria. ISBN 3-900051-07-0Google Scholar
  21. Dickman MD, Peart MR, Wai-Shu Yim W (2005) Benthic diatoms as indicators of stream sediment concentrationin Hong Kong. Int Rev Hydrobiol 90:412–421CrossRefGoogle Scholar
  22. Dong X, Bennion H, Battarbee R, Yang X, Yang H, Liu E (2008) Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. J Paleolimnol 40:413–429CrossRefGoogle Scholar
  23. Echenique R, Guerrero J (2003) Las Algas del Sistema del Río Limay (Argentina). III Chrysophyta, Bacillariophyceae. 1: centrales. B Soc Argent Bot 38:149–163Google Scholar
  24. Espinosa MA (2008) Diatoms from Patagonia and Tierra del Fuego. In: Rabassa J (ed) Late Cenozoic of Patagonia and Tierra del Fuego. Developments in quaternary sciences. Elsevier, New York, pp 383–392CrossRefGoogle Scholar
  25. Espinosa MA, Isla FI (2011) Diatom and sedimentary record during the Mid-Holocene evolution of the San Blas estuarine complex, Northern Patagonia, Argentina. Ameghiniana 48:411–423CrossRefGoogle Scholar
  26. Espinosa MA, Hassan GS, Isla FI (2012) Diatom-inferred salinity changes in relation to Holocene sea-level fluctuations in estuarine environments of Argentina. Alcheringa 36:373–386CrossRefGoogle Scholar
  27. Fayó R, Espinosa MA (2014) Reconstrucción paleoambiental de la planicie costera de Mar Chiquita (Provincia de Buenos Aires, Argentina) durante el Holoceno, basada en diatomeas. Ameghiniana 51:510–528CrossRefGoogle Scholar
  28. Fernández M (2013) Los paleoambientes de Patagonia meridional, Tierra del Fuego e Isla de los Estados en los tiempos de las primeras ocupaciones humanas. Estudio basado en el análisis de diatomeas. Unpublished Ph.D. thesis, Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo, La Plata, p 208Google Scholar
  29. Fey M, Korr C, Maidana NI, Carrevedo ML, Corbella H, Dietrich S, Haberzettl T, Kuhn G, Lücke A, Mayr C (2009) Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Palaeogeogr Palaeocl 281:363–375CrossRefGoogle Scholar
  30. Florsheim JL, Mount JF (2003) Changes in lowland floodplain sedimentation processes: pre-disturbance to post-rehabilitation, Cosumnes River, CA. Geomorphology 56:305–323CrossRefGoogle Scholar
  31. Flower R (2005) A taxonomic and ecological study of diatoms from freshwater habitats in the Falkland Islands, South Atlantic. Diatom Res 20:23–96CrossRefGoogle Scholar
  32. Gaiser E, Rühland K (2010) Diatoms as indicators of environmental change in wetlands and peatlands. In: Smol JP (eds) The diatoms: applications for the environmental and Earth Sciences. Cambridge University Press, Cambridge, pp 473–496CrossRefGoogle Scholar
  33. Galea MJ, Bazán GI, Álvarez SB, Martínez de Fabricius AL (2014) Estudio del fitoplacton aguas arriba y aguas abajo del dique embalse Casa de Piedra, río Colorado (La Pampa, Argentina). Biol Acuát 30:287–300Google Scholar
  34. Gell P, Reid M (2014) Assessing change in floodplain wetland condition in the Murray Darling Basin, Australia. Anthropocene 8:39–45CrossRefGoogle Scholar
  35. Gell PA, Sluiter IR, Fluin J (2002) Seasonal and inter-annual variations in diatom assemblages in Murray River-connected wetlands in northwest Victoria, Australia. Mar Freshw Res 53:981–992CrossRefGoogle Scholar
  36. Gell P, Tibby J, Fluin J, Leahy P, Reid M, Adamson K, Bulpin S, MacGregor A, Wallbrink P, Hancock G, Walsh B (2005) Accessing limnological change and variability using fossil diatom assemblages, south-east Australia. River Res Appl 21:257–269CrossRefGoogle Scholar
  37. Gibson C, Anderson NJ, Haworth E (2003) Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology. Eur J Phycol 38(2):83–101CrossRefGoogle Scholar
  38. González Achem AL, Seeligmann C, Alderete M (2014) Variaciones espacio-temporales de la flora diatomológica en Laguna de Los Pozuelos (Jujuy, Argentina). B Soc Argent Bot 49:177–193Google Scholar
  39. González Díaz E, Giaccardi A, Costa C (2001) La avalancha de rocas del río Barrancas (Cerro Pelán), norte del Neuquén: su relación con la catástrofe del río Colorado (29/12/1914). Rev Asoc Geol Argent 56:466–480Google Scholar
  40. Hassan GS (2013) Diatom-based reconstruction of middle to late Holocene paleoenvironments in Lake Lonkoy, southern Pampas, Argentina. Diatom Res 28:473–486CrossRefGoogle Scholar
  41. Hori K, Usami S, Ueda H (2011) Sediment facies and Holocene deposition rate of near-coastal fluvial systems: an example from the Nobi Plain, Japan. J Asian Earth Sci 41:195–203CrossRefGoogle Scholar
  42. Hotzel G, Croome R (1996) Population dynamics of Aulacoseira granulata (Ehr) Simonson (Bacillariophyceae, centrales), the dominant alga in the Murray River, Australia. Arch Hydrobiol 136(2):191–215Google Scholar
  43. Isla FI, Bertola GR (2003) Morfodinámica de playas mesomicromareales entre Bahía Blanca y Río Negro. Rev Asoc Argent Sedimentol 10:65–74Google Scholar
  44. Isla FI, Toldo EE (2013) ENSO impacts on Atlantic watersheds of South America. Quat Environ Geosci 4:34–41Google Scholar
  45. Johansen J (2010) Diatoms of aerial habitats. In: Smol JP (eds) The Diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 465–472CrossRefGoogle Scholar
  46. Juggins S (2015) Rioja: analysis of quaternary science data. R package version 0.9-5. https://cran.r-project.org/package=rioja. Accessed Nov 2016
  47. Junk WJ (2005) Flood pulsing and the linkages between terrestrial, aquatic and wetland systems. Verhandlungen der InternationaleVereinigung für Theoretische und Angewandte Limnologie 29:11–38Google Scholar
  48. Kuerten S, Parolin M, Assine ML, McGlue MM (2013) Sponge spicules indicate Holocene environmental changes on the Nabileque River floodplain, southern Pantanal, Brazil. J Paleolimnol 49:171–183CrossRefGoogle Scholar
  49. Liu Q, Yang X, Anderson NJ, Liu E, Dong X (2012) Diatom ecological response to altered hydrological forcing of a shallow lake on the Yangtze floodplain, SE China. Ecohydrology 2:316–325CrossRefGoogle Scholar
  50. Martínez G, Martínez GA (2011) Late Holocene environmental dynamics in fluvial and aeolian depositional settings: archaeological record variability at the lower basin of the Colorado river (Argentina). Quatern Int 245:89–102CrossRefGoogle Scholar
  51. Melo W, Schillizzi R, Perillo G, Piccolo MC (2003) Influencia del área continental pampeana en la evolución morfológica del estuario de Bahía Blanca. Rev Asoc Argent Sedimentol 10:39–52Google Scholar
  52. Melo W, Perillo G, Perillo M, Schilizzi R, Piccolo MC (2013) Late Pleistocene–Holocene deltas in southern Buenos Aires Province, Argentina. IAHS Publ 358:187–195Google Scholar
  53. Mirande V, Barreto G, Haleblian S, Tracanna B (2009) Biodiversidad del Parque Nacional Pre-Delta (Entre Ríos, Argentina): II. Estudio cuantitativo del fitoplancton. B Soc Argent Bot 44:11–23Google Scholar
  54. Nodine ER, Gaiser EE (2014) Distribution of diatoms along environmental gradients in the Charlotte harbor, Florida (USA), estuary and its watershed: implications for bioassessment of salinity and nutrient concentrations. Estuar Coast 37:864–879CrossRefGoogle Scholar
  55. Ochsenius C (1995) Late Pleistocene paleoecology of the South American aridity. A case of continental dichotomy and the search of a new paradigm in paleoclimatology. In: Argollo J (eds) Cambios Cuaternarios en América del Sur. ORSTOM, La Paz, Bolivia, pp 3–27Google Scholar
  56. O’Farrell I, Tell G, Podlejski A (2001) Morphological variability of Aulacoseira granulata (Ehr.) Simonsen (Bacillariophyceae) in the Lower Paraná River (Argentina). Limnology 2:65–71CrossRefGoogle Scholar
  57. Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.3-0. https://cran.r-project.org/package=vegan. Accessed Nov 2016
  58. Piątek J, Piątek M, Zeeb BA, El Shahed A (2009) Chrysophyte stomatocysts in Africa: the first description of an assemblage in the recent sediments of a thermo-mineral spring in Egypt. Phycologia 48:13–23CrossRefGoogle Scholar
  59. Pla S, Camarero L, Catalan J (2003) Chrysophyte cyst relationships to water chemistry in Pyrenean lakes (NE Spain) and their potential for environmental reconstruction. J Paleolimnol 30:21–34CrossRefGoogle Scholar
  60. Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular sphaeroid bodies of Rhopalodia gibba have nitrogen fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481CrossRefGoogle Scholar
  61. Reid MA, Ogden RW (2006) Trend, variability or extreme event? The importance of long-term perspectives in river ecology. River Res Appl 22:167–177CrossRefGoogle Scholar
  62. Reid MA, Sayer CD, Kershaw AP, Heijnis H (2007) Palaeolimnological evidence for submerged plant loss in a floodplain lake associated with accelerated catchment soil erosion (Murray River, Australia). J Paleolimnol 38:191–208CrossRefGoogle Scholar
  63. Reid MA, Chilcott S, Thoms MC (2017) Using palaeoecological records to disentangle the effects of multiple stressors on floodplain wetlands. J Paleolimnol.  https://doi.org/10.1007/s10933-017-0011-y Google Scholar
  64. Rivera P, Cruces F, Vila I (2002) Primera cita de Stephanodiscus agassizensis Hakansson and Kling (Bacillariophyceae) en Chile. Gayana Bot 59:79–86Google Scholar
  65. Rodríguez P, Tell G, Pizarro H (2011) Epiphytic algal biodiversity in humic shallow lakes from the Lower Paraná River Basin (Argentina). Wetlands 31:53–63CrossRefGoogle Scholar
  66. Schäbitz F (1994) Holocene climatic variations in northern Patagonia, Argentina. Palaeogeogr Palaeocl 109:287–294CrossRefGoogle Scholar
  67. Schäbitz F, Paez MM, Mancini MV, Quintana F, Wille M, Corbella H, Haberzettl T, Lücke A, Prieto A, Maidana N, Mayr C, Ohlendorf C, Schleser GH, Zolitschka B (2003) Estudios paleoambientales en lagos volcánicos en la Región Volcánia de Pali Aike, sur de Patagonia (Argentina): palinología. Revista del Museo Argentino de Ciencias Naturales, Nueva Serie 5(2):301–316CrossRefGoogle Scholar
  68. Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466CrossRefGoogle Scholar
  69. Scheffer M, Carpenter S, Foley JA, Folke C, Walkerk B (2001) Catastrophic shifts in ecosystems. Nature 413:590–596CrossRefGoogle Scholar
  70. Sienkiewicz E, Gąsiorowski M, Migała K (2017) Unusual reaction of diatom assemblage on climate changes during the last millennium: a record from Spitsbergen lake. J Paleolimnol 58:73–87CrossRefGoogle Scholar
  71. Smol JP (1985) The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123:199–208CrossRefGoogle Scholar
  72. Spalletti LA, Isla FI (2003) Características y evolución del delta del Río Colorado “colú-leuvú”, Provincia de Buenos Aires, República Argentina. Rev Asoc Argent Sedimentol 10:23–37Google Scholar
  73. Stancheva R, Sheath RG, Read BA, McArthur KD, Schroepfer C, Kociolek JP, Fetscher AE (2013) Nitrogen-fixing cyanobacteria (free-living and diatom endosymbionts): their use in southern California stream bioassessment. Hydrobiologia 720:111–127CrossRefGoogle Scholar
  74. Stone JR, Westover KS, Cohen AS (2011) Late Pleistocene paleohydrography and diatom paleoecology of the central basin of Lake Malawi, Africa. Palaeogeogr Palaeocl 303:51–70CrossRefGoogle Scholar
  75. Tockner K, Pusch M, Borchardt D, Lorang MS (2010) Multiple stressors in coupled river-floodplain ecosystems. Freshw Biol 55:135–151CrossRefGoogle Scholar
  76. Tolotti M, Corradini F, Boscaini A, Calliari D (2007) Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578:147–156CrossRefGoogle Scholar
  77. van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Aquat Ecol 28:117–133CrossRefGoogle Scholar
  78. Van de Vijver B, Ledeganck P, Lebouvier M (2002) Luticola beyensii sp. nov., a new aerophilous diatom from Ile Saint Paul (Indian Ocean, Taaf). Diatom Res 17:235–241CrossRefGoogle Scholar
  79. Vélez-Agudelo C, Espinosa M, Fayó R, Isla F (2017) Modern diatoms from a temperate river in South America: the Colorado River (North Patagonia, Argentina). Diatom Res 32(2):133–152CrossRefGoogle Scholar
  80. Vella C, Fleury TJ, Raccasi G, Provansal M, Sabatier F, Bourcier M (2005) Evolution of the Rhône delta plain in the Holocene. Mar Geol 222:235–265CrossRefGoogle Scholar
  81. Vigna MS (1995) Flora fósil de estatosporas crisofíceas (Chrysophyta) en sedimentos recientes del lago Nahuel-Huapi (Río Negro. Argentina). Ameghiniana 32:63–72Google Scholar
  82. Vos PC, de Wolf H (1993) Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. In: Twelfth international diatom symposium. Springer, pp 285–296Google Scholar
  83. Vouilloud A (2003) Catálogo de diatomeas continentales y marinas de Argentina. Asociación Argentina de Ficología, BelgiumGoogle Scholar
  84. Walker KF, Thoms MC (1993) Environmental effects of flow regulation on the lower river Murray, Australia. River Res Appl 8:103–119CrossRefGoogle Scholar
  85. Weiler N (2000) Evolución de los depósitos litorales en bahía Anegada, provincia de Buenos Aires, durante el Cuaternario Tardío Unpublished Ph.D. thesis. University of Buenos Aires, Buenos Aires, p 184Google Scholar
  86. Wolfe BB, Smol JP (2005) Impact of climate and river flooding on the hydroecology of flood plain basin, peace—Athabasca Delta, Canada since 1700. Quat Res 6:147–162CrossRefGoogle Scholar
  87. Wolfe BB, Hall RI, Edwards TWD, Vardy SR, Falcone MD, Sjunneskog C, Sylvestre F, McGowan S, Leavitt PR, van Driel P (2008) Hydroecological responses of the Athabasca Delta, Canada, to changes in river flow and climate during the 20th century. Ecohydrology 1:131–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rocío Fayó
    • 1
    • 2
  • Marcela A. Espinosa
    • 1
    • 2
  • Camilo A. Vélez-Agudelo
    • 1
    • 2
  • Jerónimo Pan
    • 1
    • 2
  • Federico I. Isla
    • 1
    • 2
  1. 1.Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET/UNMdP)Mar del PlataArgentina
  2. 2.Instituto de Geología de Costas y del Cuaternario (IGCyC, UNMdP/CIC)Mar del PlataArgentina

Personalised recommendations