Advertisement

Journal of Paleolimnology

, Volume 60, Issue 3, pp 413–425 | Cite as

Mining pollution triggered a regime shift in the cladoceran community of Lake Kirkkojärvi, southern Finland

  • Jaakko Leppänen
  • Jan Weckström
  • Atte Korhola
Original paper

Abstract

Mining is one of the key industries in the world and mine water pollution is a serious threat to aquatic ecosystems. Historical monitoring data on the pollution history and impacts in aquatic ecosystems, however, are rarely available, so paleolimnological methods are required to explore the consequences of past pollution. We studied the history of cladoceran community dynamics in Lake Kirkkojärvi, southern Finland, including the periods before, during and after mining. We analyzed the geochemical composition and cladoceran subfossil remains in a 210Pb-dated sediment core to evaluate the magnitude, rate, and direction of cladoceran community changes through time. The cladoceran community was altered significantly by mining activity that occurred during the mid-twentieth century. During more recent times, however, eutrophication effects have overridden the impacts of mining. After mining ceased, the cladoceran community underwent an abrupt regime shift towards taxa that reflect more eutrophic conditions. This change was caused by intensive farming activity and fertilizer use over the past few decades. The recent history of Lake Kirkkojärvi is a textbook example of a regime shift triggered by multiple human-caused stressors. Our findings also highlight the utility of cladocerans as bio-indicators in pollution research and illustrate the sensitivity of aquatic ecosystems to anthropogenic modification.

Keywords

Minewater Mining Pollution Cladocera Paleolimnology Finland 

Notes

Acknowledgements

This work was funded partly by the Tellervo and Juuso Walden Foundation and the K.H. Renlund Foundation. The authors are grateful to the Schulte-Tigges family and to Mr. Hannu Uotila for their invaluable comments. The authors thank Annika Parviainen and Tommi Kauppila for additional data and two anonymous reviewers for their comments, which greatly improved this manuscript.

Supplementary material

10933_2018_30_MOESM1_ESM.pdf (322 kb)
Supplementary material 1 (PDF 322 kb)

References

  1. Ahlgren G, Lundstedt L, Brett M, Forsberg C (1990) Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res 12:809–818CrossRefGoogle Scholar
  2. Alexander D (1986) Northern Italian dam failure and mudflow. Disasters 10:3–7CrossRefGoogle Scholar
  3. Anderson NJ, Renberg I, Segerström U (1995) Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjon, northern Sweden). J Ecol 83:809–822CrossRefGoogle Scholar
  4. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203Google Scholar
  5. Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldefield F, Anderson NJ, Battarbee RW (1986) 210Pb dating by low background gamma counting. Hydrobiologia 141:21–27CrossRefGoogle Scholar
  6. Appleby PG, Richardson N, Nolan PJ (1991) 241Am dating of lake sediments. Hydrobiologia 214:35–42CrossRefGoogle Scholar
  7. Appleby PG, Richardson N, Nolan PJ (1992) Self-absorption corrections for well-type germanium detectors. Nucl Instrum Meth B 71:228–233CrossRefGoogle Scholar
  8. Arruda JA, Marzolf GR, Faulk RT (1983) The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64:1225–1235CrossRefGoogle Scholar
  9. Belyaeva M, Deneke R (2007) Colonization of acidic mining lakes: chydorus sphaericus and other Cladocera within a dynamic horizontal pH gradient (pH 3-7) in Lake Senftenberger See (Germany). Hydrobiologia 594:97–108CrossRefGoogle Scholar
  10. Bennett K (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  11. Bilotta GS, Brazier RE (2008) Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42:2849–2861CrossRefGoogle Scholar
  12. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  13. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10CrossRefGoogle Scholar
  14. Bjerring R, Becares E, Declerck S, Gross EM, Hansson L-A, Kairesalo T, Nykänen M, Halkiewicz A, Kornijów R, Conde-Porcuna JM, Seferilis M, Noges T, Moss B, Amsinck SL, Van Odgaard B, Jeppesen E (2009) Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshw Biol 54:2401–2417CrossRefGoogle Scholar
  15. Bossuyt BTA, Jansen CR (2005) Copper toxicity to different field- collected cladoceran species: intra- and interspecies sensitivity. Environ Pollut 136:145–154CrossRefGoogle Scholar
  16. Boucherle MM, Züllig H (1983) Cladoceran remains as evidence of change in the trophic state in three Swiss lakes. Hydrobiologia 103:141–146CrossRefGoogle Scholar
  17. Boudreau BP, Barry M, L’Esperance C, Algar CK, Johnson BD (2013) The mechanics of soft cohesive sediments during early diagenesis. In: Reible DD (ed) Processes, assessment and remedation of contaminated sediments. Springer, New York, pp 81–105Google Scholar
  18. Bozelli RL (1996) The influence of bauxite tailings on the cladoceran populations of Lake Batata, Amazonia, Brazil. Int Rev Hydrobiol 81:621–634CrossRefGoogle Scholar
  19. Bradbury JP, Megarad RO (1972) Stratigraphic record of pollution in Shagawa Lake, Northeastern Minnesota. Geol Soc Am Bull 83:2639–2648CrossRefGoogle Scholar
  20. Brix KV, DeForest DK, Adams WJ (2001) Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Environ Toxicol Chem 20:1846–1856CrossRefGoogle Scholar
  21. Brooks JL, Dodson SI (1965) Predation, body size and composition of plankton. Science 150:28–35CrossRefGoogle Scholar
  22. Calonius AE (1805) A117:3/1-14. Inkula: Isojaon kartta ja jakoraja. [Map]. Available at Digital Archieves of National Archives of Finland. http://digi.narc.fi/digi/slistaus.ka?ay=246311. Accessed 14 June 2017
  23. Ciszewski D, Aleksander-Kwaterczak U, Pociecha A, Szarek-Gwiazda E, Waloszek A, Wilk-Woźniak E (2013) Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine. Environ Monit Assess 185:9825–9842CrossRefGoogle Scholar
  24. Coard MA, Cousen SM, Cuttler AH, Dean HJ, Dearing JA, Eglinton TI, Greaves AM, Lacey KP, O’Sullivan PE, Pickering DA, Rhead MM, Rodwell JK, Simola H (1983) Paleolimnological studies of annually-laminated sediments in Loe Pool, Cornwall, U.K. Hydrobiologia 103:185–191CrossRefGoogle Scholar
  25. Couillard Y, Courcelles M, Cattaneo A, Wunsam S (2004) A test of the integrity of metal records in sediment cores based on the documented history of metal contamination in Lac Dufault (Québec, Canada). J Paleolimnol 32:149–162CrossRefGoogle Scholar
  26. Doig LE, Schiffer ST, Liber K (2015) Reconstructing the ecological impacts of eight decades of mining, metallurgical, and municipal activities on a small boreal lake in Northern Canada. Integr Environ Assess Manag 11:490–501CrossRefGoogle Scholar
  27. Downing AL, Leibold MA (2010) Species richness facilitates ecosystem resilience in aquatic food webs. Freshw Biol 55:2123–2137CrossRefGoogle Scholar
  28. Downing AL, Brown BL, Leibold MA (2014) Multiple diversity-stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95:173–184CrossRefGoogle Scholar
  29. Dupuis LV, Hann BJ, Paterson M (2015) Littoral cladoceran community reassembly following the cessation of disturbance. J Paleolimnol 54:121–135CrossRefGoogle Scholar
  30. EIFAC (1965) Water quality criteria for European freshwater fish. Report on finely divided solids and inland fisheries. EIFAC technical paper no. 1. Int J Air Water Poll 9:151–168Google Scholar
  31. Escobar H (2015) Mud tsunami wreaks ecological havoc in Brazil. Science 350:1138–1139CrossRefGoogle Scholar
  32. European Environment Agency (2010) Freshwater—state and impacts (Finland). European Environment Agency. https://www.eea.europa.eu/soer/countries/fi/freshwater-state-and-impacts-finland-1. Accessed 5 June 2017
  33. Feasby DG, Chambers DB, Fernandez Rubio R, Gascó Montes JM, Hynes TP (1999) Environmental Impact and Reclamation Planning following the April 25, 1998 accidental Tailings Release at the Boliden Apirsa Mine at Aznalcóllar, Spain. In: Fernández RR (ed) Mine, water & environment I. International Mine Water Association International Congress; 1999 Sevilla, Spain. International Mine Water Association, pp 279–290Google Scholar
  34. Fields S (2003) The earth’s open wounds: abandoned and orphaned mines. Environ Health Perspect 111:154–161Google Scholar
  35. Finnish Meteorological Institute (2015) Vuositilastot. http://ilmatieteenlaitos.fi/vuositilastot. Accessed 1 June 2016
  36. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581CrossRefGoogle Scholar
  37. Frisch D, Cottenie K, Badosa A, Green A (2012) Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS ONE 7(7):e40205.  https://doi.org/10.1371/journal.pone.0040205 CrossRefGoogle Scholar
  38. Garrido AV, Bozelli RL, Esteves FDA, Alves LS (2003) Long-term patterns of the planktonic cladoceran community of Batata Lake, Amazonia, Brazil. Acta Limnol Bras 15:41–53Google Scholar
  39. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9Google Scholar
  40. Hoffman W (1987) Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145:315–321CrossRefGoogle Scholar
  41. Holopainen IJ, Holopainen A-L, Huitu E, Rahkola-Sorsa M, Zingel P (2008) The pelagic food web in forest lakes affected by alkaline mining waste in NW Russia. Est J Ecol 57:214–228CrossRefGoogle Scholar
  42. Ilus E, Saxén R (2005) Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. J Environ Radioact 82:199–221CrossRefGoogle Scholar
  43. Ilus E, Puhakainen M, Saxén R (1993) Gamma-emitting radionuclides in the bottom sediments of some Finnish lakes. STUK-A112. Finnish Centre for Radiation and Nuclear Safety, HelsinkiGoogle Scholar
  44. Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198CrossRefGoogle Scholar
  45. Johnson DB (2002) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Poll 3:47–66CrossRefGoogle Scholar
  46. Kaskimies SJ, Sinisalo H (1973) Viljakkala – pitäjä Pirkanmaalla. Viljakkalan kunta, YlöjärviGoogle Scholar
  47. Kelly MG (1988) Mining and the freshwater environment. Elsevier Applied Science, LondonCrossRefGoogle Scholar
  48. Kerfoot WC, Robbins JA, Weider LJ (1999) A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol Oceanogr 44:1232–1247CrossRefGoogle Scholar
  49. Keskitalo P (2014) Ylöjärven ympäristön tila 2013. Maankäyttö ja ympäristö. Ylöjärven kaupunki, YlöjärviGoogle Scholar
  50. Kihlman S, Kauppila T (2010) Tracking the aquatic impacts of historical metal mine using lacustrine protists and diatom algae. Mine Water Environ 29:116–134CrossRefGoogle Scholar
  51. Kirk KL (1992) Effects of suspended clay on Daphnia body growth and fitness. Freshw Biol 28:103–109CrossRefGoogle Scholar
  52. Koivisto S, Ketola M, Walls M (1992) Comparison of five cladoceran species in short- and long-term copper exposure. Hydrobiologia 248:125–136CrossRefGoogle Scholar
  53. Korhola A, Rautio M (2001) Cladocera and other Branchiopod crustaceans. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 4. Zoological indicators. Kluwer Academic Publishers, Dordrecht, pp 5–41CrossRefGoogle Scholar
  54. Korhola A, Olander H, Blom T (2000) Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. J Paleolimnol 24:43–54CrossRefGoogle Scholar
  55. Kurek J, Korosi JB, Jeziorski A, Smol JP (2010) Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. J Paleolimnol 44:603–612CrossRefGoogle Scholar
  56. Leppänen JJ, Weckström J, Korhola A (2017) Paleolimnological fingerprinting of the impact of acid mine drainage after 50 years of chronic pollution in a southern Finnish lake. Water Air Soil Poll.  https://doi.org/10.1007/s11270-017-3417-2 Google Scholar
  57. Lotter AF, Juggins S (1991) PLOPROF, TRAN and ZONE. Programs for plotting, editing and zoning of pollen and diatom data. INQUA Commmission for the study of the Holocene, Working Group on Data Handling Methods, Newsletter 6Google Scholar
  58. Louette G, de Meester L (2005) High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86:353–359CrossRefGoogle Scholar
  59. Manoylov KM, Ognjanova-Rumenova N, Stevenson RJ (2009) Morphotype variations in subfossil diatom species of Aulacoseira in 24 Michigan Lakes, USA. Acta Bot Croat 68:401–419Google Scholar
  60. McDonald CP, Urban NR (2007) Sediment radioisotope dating across a stratigraphic discontinuity in a mining-impacted lake. J Environ Radioact 92:80–95CrossRefGoogle Scholar
  61. Nevalainen L, Luoto TP (2013) Limnological deterioration forces community and phenotypic changes in Cladocera: tracking eutrophication of Mallusjärvi, a lake in southern Finland. Boreal Environ Res 18:209–222Google Scholar
  62. Nevalainen L, Sarmaja-Korjonen K, Luoto TP (2011) Sedimentary cladocera as indicators of past water-level changes in shallow northern lakes. Quat Res 75:430–437CrossRefGoogle Scholar
  63. Nevalainen L, Luoto TP, Kultti S, Sarmaja-Korjonen K (2013) Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. J Biogeogr 40:1548–1559CrossRefGoogle Scholar
  64. Nykänen M, Liukkonen M, Kairesalo T (2006) Changes of predation pressure by fish in Lake Vesijärvi reflected by sedimentary cladoceran remains. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 29:1321–1326Google Scholar
  65. Outridge PM, Wang F (2016) The stability of metal profiles in freshwater and marine sediments. In: Blais JM, Rosen MR, Smol JP (eds) Environmental contaminants using natural archives to track sources and long-term trends of pollution. Springer, Dordrecht, pp 35–60Google Scholar
  66. Parviainen A (2009) Tailings mineralogy and geochemistry at the abandoned Haveri Au–Cu Mine, SW Finland. Mine Water Environ 28:291–304CrossRefGoogle Scholar
  67. Parviainen A, Kauppila T, Loukola-Ruskeeniemi K (2012) Long-term lake sediment records and factors affecting the evolution of metal(loid) drainage from two mine sites (SW Finland). J Geochem Explor 114:46–56CrossRefGoogle Scholar
  68. Pitkänen M-L (2007) Alholahden alueen Natura 2000 –alueen hoito- ja käyttösuunnitelma. Pirkanmaan ympäristökeskuksen raportteja 4/2007. Pirkanmaan ympäristökeskus, TampereGoogle Scholar
  69. Pöyry (2015) Haverin entisen kaivoksen jätealueen kunnostuksen jatkosuunnitelma ja alustava kustannusarvio. Pirkanmaan ELY –keskus ja Ylöjärven Kaupunki, YlöjärviGoogle Scholar
  70. Randsalu-Wendrup L, Conley DJ, Carstensen J, Fritz SC (2016) Paleolimnlogical records of regime shifts in lakes in response to climate change and anthropogenic activities. J Paleolimnol 56:1–14CrossRefGoogle Scholar
  71. Räsänen J, Kauppila T, Salonen V-P (2006) Sediment-based investigation of naturally or historically eutrophic lakes—implications for lake management. J Environ Manag 79:253–265CrossRefGoogle Scholar
  72. Sarma SSS, Nandini S (2006) Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health B 41:1417–1430CrossRefGoogle Scholar
  73. Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681CrossRefGoogle Scholar
  74. Sienkiewicz E, Gasiorowski M (2016) The evolution of a mining lake—from acidity to neutralization. Sci Total Environ 557–558:343–354CrossRefGoogle Scholar
  75. Soldán P, Pavonič M, Bouček J, Kokeš J (2001) Baia Mare accident—brief ecotoxicological report of Czech experts. Ecotox Environ Saf 49:255–261CrossRefGoogle Scholar
  76. Stankovic I, Ternjej I, Mihaljevic Z, Furac L, Kerovec M (2011) Crustacean plankton community (Crustacea: Copepoda and Cladocera) in gypsum karst lakes and their relation to abiotic parameters. Hydrobiologia 666:145–153CrossRefGoogle Scholar
  77. Stenson JAE (1976) Significance of predator influences on composition of Bosmina spp. populations. Limnol Oceanogr 21:814–822CrossRefGoogle Scholar
  78. Sterner RW (2009) Role of zooplankton in aquatic ecosystems. In: Likens GE (ed) Encyclopedia of inland waters. Academic Press, Oxford, pp 678–688CrossRefGoogle Scholar
  79. Suhett AL, Santangelo JM, Bozelli RL, Steinberg CEW, Farjalla VF (2015) An overview of the contribution of studies with cladocerans to environmental stress research. Acta Limnol Bras 27:145–159CrossRefGoogle Scholar
  80. Szeroczyñska K, Sarmaja-Korjonen K (2007) Atlas of subfossil cladocera from central and northern Europe. Friends of Lower Vistula Society, PolandGoogle Scholar
  81. Thienpont JR, Korosi JB, Hargan KE, Williams T, Eickmeyer DC, Kimpe LE, Palmer MJ, Smol JP, Blais JM (2016) Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake. Proc R Soc Biol Sci Ser B.  https://doi.org/10.1098/rspb.2016.1125 Google Scholar
  82. Valois AE, Keller WB, Ramcharan CW (2011) Recovery in a multiple stressor environment: using the reference condition approach to examine zooplankton community change along opposing gradients. J Plankton Res 33:1417–1429CrossRefGoogle Scholar
  83. Vandysh OI (2004) Zooplankton as an indicator of the state of lake ecosystems polluted with mining wastewater in the Kola Peninsula. Russ J Ecol 35:134–140CrossRefGoogle Scholar
  84. Vänni O (1928) Satakunta, Kotiseutututkimuksia III. Satakuntalainen Osuuskunta, VammalaGoogle Scholar
  85. Von Der Ohe PC, Liess M (2004) Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environ Toxicol 23:150–156CrossRefGoogle Scholar
  86. Walseng B, Hessen DO, Halvorsen G, Schartau AK (2006) Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol Oceanogr 51:2600–2606CrossRefGoogle Scholar
  87. Winegardner AK, Salter N, Aebischer S, Pienitz R, Derry AM, Wing B, Beisner BE, Gregory-Eaves I (2017) Cladoceran diversity dynamics in lakes from a northern mining region: responses to multiple stressors characterized by alpha and beta diversity. Can J Fish Aquat Sci.  https://doi.org/10.1139/cjfas-2016-0449 Google Scholar
  88. Zawisza E, Szeroczyñska K (2007) The development history of Wigry Lake as shown by subfossil cladoceran. Geochronometria 27:67–74CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jaakko Leppänen
    • 1
  • Jan Weckström
    • 1
  • Atte Korhola
    • 1
  1. 1.Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiHelsinkiFinland

Personalised recommendations