Advertisement

Journal of Paleolimnology

, Volume 60, Issue 3, pp 381–398 | Cite as

A high-resolution pigment and productivity record from the varved Ponte Tresa basin (Lake Lugano, Switzerland) since 1919: insight from an approach that combines hyperspectral imaging and high-performance liquid chromatography

  • Tobias Schneider
  • Denise Rimer
  • Christoph Butz
  • Martin Grosjean
Original paper
  • 249 Downloads

Abstract

Eutrophication, prompted by anthropogenic activities and climate change has led to multiple adverse effects in freshwater systems across the world. As instrumental measurements are typically short, lake sediment proxies of aquatic primary productivity (PP) are often used to extend the observational record of eutrophication back in time. Sedimentary pigments provide specific information on PP and major algal communities, but the records are often limited in the temporal resolution. Hyperspectral imaging (HSI) data, in contrast, provide very high seasonal (sub-varve-scale) resolution, but the pigment speciation is limited. Here, we explore a combined approach on varved sediments from the Ponte Tresa basin, southern Switzerland, taking the advantages of both methods (HSI and high performance liquid chromatography, HPLC) with the goal to reconstruct the recent eutrophication history at seasonal to interannual resolution. We propose a modified scheme for the calibration of HSI data (here: Relative Absorption Band Depth between 590 and 730 nm RABD590–730) and HPLC-inferred pigment concentrations (here: ‘green pigments’ {chlorophyll a and pheophytin a}) and present a calibration model (R2 = 0.82; RMSEP ~ 12%). The calibration range covers > 98% of the spectral index values of all individual pixels (68 µm × 68 µm) in the sediment core. This allows us to identify and quantify extreme pigment concentrations related to individual major algal blooms, to identify multiple algal blooms within one season, and to assess interannual variability of PP. Prior to the 1930s, ‘green pigment’ concentrations and fluxes (~ 50 µg g−1; ~ 2 µg cm−2a−1, chlorophyll a and pheophytin a) and interannual variability was very low. From the 1930s to 1964, chlorophyll a and pheophytin a increased by a factor of ~ 4, and ββ-carotene appeared in substantial amounts (~ 0.4 µg cm−2a−1). Interannual variability increased markedly and a first strong algal bloom with ‘green pigment’ concentrations as high as 700 µg g−1 is observed in 1958. Peak eutrophication (~ 12 µg cm−2a−1 chlorophyll a and pheophytin a) and very high interannual variability with extreme algal blooms (‘green pigment’ concentrations up to 1400 µg g−1) is observed until ca. 1990, when eutrophication decreases slightly. Maximum PP values after 2009 are likely the result of internal nutrient cycling related to repeated deep mixing of the lake.

Keywords

Eutrophication Global change Paleolimnology Freshwater systems Anthropocene Alps 

Notes

Acknowledgements

The project was funded by the Swiss National Science Foundation Grant 200021_152986. MG designed the research. DR, CB and TS did all the sedimentological and statistical analyses. TS and MG wrote the paper, all authors commented on the drafts. We thank Dr. Daniela Fischer for the lab assistance and Carole Adolf (Institute of Plant Sciences, University of Bern) for the support in the field and the varve counting.

Supplementary material

10933_2018_28_MOESM1_ESM.docx (899 kb)
Supplementary material 1 (DOCX 899 kb)

References

  1. Aeschbach-Hertig W, Holzner CP, Hofer M, Simona M, Barbieri A, Kipfer R (2007) A time series of environmental tracer data from deep meromictic Lake Lugano, Switzerland. Limnol Oceanogr 52:257–273.  https://doi.org/10.4319/lo.2007.52.1.0257 CrossRefGoogle Scholar
  2. Airs RL, Atkinson JE, Keely BJ (2001) Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917:167–177.  https://doi.org/10.1016/S0021-9673(01)00663-X CrossRefGoogle Scholar
  3. Amann B, Lobsiger S, Fischer D, Tylmann W, Bonk A, Filipiak J, Grosjean M (2014) Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907–2008. Glob Planet Change 123:86–96.  https://doi.org/10.1016/j.gloplacha.2014.10.008 CrossRefGoogle Scholar
  4. Barbieri A, Simona M (2001) Trophic evolution of Lake Lugano related to external load reduction: changes in phosphorus and nitrogen as well as oxygen balance and biological parameters. Lakes Reserv Res Manag 6:37–47.  https://doi.org/10.1046/j.1440-1770.2001.00120.x CrossRefGoogle Scholar
  5. Battarbee RW, Bennion H, Gell P, Rose N (2012) Ecosystems. In: Matthews JA, Bartlein PJ, Briffa KR, Dawson AG, de Vernal A, Denham T, Fritz SC, Oldfield F (eds) The SAGE handbook of environmental change: volume 2: human impacts and responses, 1st edn. SAGE Publications Inc., London, pp 583–606Google Scholar
  6. Blass A, Bigler C, Grosjean M, Sturm M (2007) Decadal-scale autumn temperature reconstruction back to AD 1580 inferred from the varved sediments of Lake Silvaplana (southeastern Swiss Alps). Quat Res 68:184–195.  https://doi.org/10.1016/j.yqres.2007.05.004 CrossRefGoogle Scholar
  7. Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46:1–27.  https://doi.org/10.1029/2006RG000210 CrossRefGoogle Scholar
  8. Bundesamt für Umwelt (BAFU) (1995) Der Zustand der Seen in der SchweizGoogle Scholar
  9. Bundesamt für Umwelt (BAFU) (2016) Faktenblatt: Der Lago di Lugano. Zustand bezüglich Wasserqualität, BernGoogle Scholar
  10. Butz C, Grosjean M, Fischer D, Wunderle S, Tylmann W, Rein B (2015) Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. J Appl Remote Sens 9:1–20.  https://doi.org/10.1117/1.jrs.9.096031 CrossRefGoogle Scholar
  11. Butz C, Grosjean M, Goslar T, Tylmann W (2017) Hyperspectral imaging of sedimentary bacterial pigments: a 1700-year history of meromixis from varved Lake Jaczno, northeast Poland. J Paleolimnol 58:57–72.  https://doi.org/10.1007/s10933-017-9955-1 CrossRefGoogle Scholar
  12. Conley DJ, Schelske CL (2002) Biogenic Silica. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, Algal, and Siliceous Indicators. Kluwer, Dordrecht, pp 289–293CrossRefGoogle Scholar
  13. Croudace IW, Rothwell RG (2015) Micro-XRF studies of sediment cores: a perspective on capability and application in the environmental sciences.  https://doi.org/10.1007/978-94-017-9849-5_1
  14. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis, special publication. Geological Society, London, pp 51–63Google Scholar
  15. Das B, Vinebrooke RD, Sanchez-Azofeifa A, Rivard B, Wolfe AP (2005) Inferring sedimentary chlorophyll concentrations with reflectance spectroscopy: a novel approach to reconstructing historical changes in the trophic status of mountain lakes. Can J Fish Aquat Sci 62:1067–1078.  https://doi.org/10.1139/f05-016 CrossRefGoogle Scholar
  16. Dean W (1999) The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21:375–393CrossRefGoogle Scholar
  17. Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Çagatay MN, Dale AW, Etiope G, Erdem Z, Geraga M, Gilli A, Gomoiu MT, Hall POJ, Hansson D, He Y, Holtappels M, Kirf MK, Kononets M, Konovalov S, Lichtschlag A, Livingstone DM, Marinaro G, Mazlumyan S, Naeher S, North RP, Papatheodorou G, Pfannkuche O, Prien R, Rehder G, Schubert CJ, Soltwedel T, Sommer S, Stahl H, Stanev EV, Teaca A, Tengberg A, Waldmann C, Wehrli B, Wenzhöfer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11:1215–1259.  https://doi.org/10.5194/bg-11-1215-2014 CrossRefGoogle Scholar
  18. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35.  https://doi.org/10.1016/0098-3004(87)90022-7 CrossRefGoogle Scholar
  19. Guilizzoni P, Marchetto A, Lami A, Gerli S, Musazzi S (2011) Use of sedimentary pigments to infer past phosphorus concentration in lakes. J Paleolimnol 45:433–445.  https://doi.org/10.1007/s10933-010-9421-9 CrossRefGoogle Scholar
  20. Håkanson L, Jansson M (2002) Principals of lake sedimentology. The Blackburn press, CaldwellGoogle Scholar
  21. Hall R, Leavitt P, Smol J, Zirnhelt N (1997) Comparison of diatoms, fossil pigments and historical records as measures of lake eutrophication. Freshw Biol 38:401–417.  https://doi.org/10.1046/j.1365-2427.1997.00251.x CrossRefGoogle Scholar
  22. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110.  https://doi.org/10.1023/A:1008119611481 CrossRefGoogle Scholar
  23. Huser BJ, Egemose S, Harper H, Hupfer M, Jensen H, Pilgrim KM, Reitzel K, Rydin E, Futter M (2016) Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Res 97:122–132.  https://doi.org/10.1016/j.watres.2015.06.051 CrossRefGoogle Scholar
  24. Istituto scienze della Terra (IST-SUPSI) (2016) Ricerche sull’evoluzione del Lago di Lugano. Aspetti limnologici. Programma quinquennale 2013–2015. Campagna 2015 e sintesi pluriennaleGoogle Scholar
  25. Jenny JP, Arnaud F, Dorioz JM, Giguet Covex C, Frossard V, Sabatier P, Millet L, Reyss J-L, Tachikawa K, Bard E, Pignol C, Soufi F, Romeyer O, Perga M-E (2013) A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnol Oceanogr 58:1395–1408.  https://doi.org/10.4319/lo.2013.58.4.1395 CrossRefGoogle Scholar
  26. Jenny JP, Francus P, Normandeau A, Lapointe F, Perga M-E, Ojala A, Schimmelmann A, Zolitschka B (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Change Biol 22:1481–1489.  https://doi.org/10.1111/gcb.13193 CrossRefGoogle Scholar
  27. Juggins S (2017) rioja: analysis of quaternary science data, R package version 0.9-15Google Scholar
  28. Kamatani A, Oku O (2000) Measuring biogenic silica in marine sediments. Mar Chem 68:219–229.  https://doi.org/10.1016/S0304-4203(99)00079-1 CrossRefGoogle Scholar
  29. Kassambara A, Mundt F (2017) factoextra: extract and visualize the results of multivariate data analyses, R package version 1.0.4Google Scholar
  30. Korhola A, Sorvari S, Rautio M, Appleby PG (2002) A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Sannajärvi in Finnish Lapland. J Paleolimnol 28:59–77CrossRefGoogle Scholar
  31. Kruse FA, Boardman JW, Huntington JF (1999) Fifteen years of hyperspectral data: Northern Grapevine Mountains, Nevada. In: Proc. 8th JPL airborne earth sci. work. Jet Propulsion Laboratory Publication, pp 247–258Google Scholar
  32. Lami A, Guilizzoni P, Marchetto A (2000) High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project. J Limnol 59:15–28CrossRefGoogle Scholar
  33. Larsson LA (2003) Cybis CooRecorder—image coordinate recording programGoogle Scholar
  34. Leavitt PR, Hodgson DA (2002) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, Algal, and Siliceous Indicators. Kluwer, Dordrecht, pp 295–325CrossRefGoogle Scholar
  35. Lee M, Shevliakova E, Malyshev S, Milly PCD, Jaffé PR (2016) Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk. Geophys Res Lett 43:7520–7528.  https://doi.org/10.1002/2016GL069254 CrossRefGoogle Scholar
  36. Lepori F, Roberts JJ (2015) Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers? J Great Lakes Res 41:973–981.  https://doi.org/10.1016/j.jglr.2015.08.004 CrossRefGoogle Scholar
  37. Lepori F, Roberts JJ (2017) Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication. J Great Lakes Res 43:255–264.  https://doi.org/10.1016/j.jglr.2017.01.008 CrossRefGoogle Scholar
  38. Lotter AF (2001) The effect of eutrophication on diatom diversity: examples from six Swiss lakes. In: Jahn R, Kocioleck JP, Witkowski A, Compère P (eds) Lange-Bertalot-Festschrift. Ruggel, Gantner, pp 417–432Google Scholar
  39. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  40. Michelutti N, Smol JP (2016) Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253–265.  https://doi.org/10.1007/s10933-016-9921-3 CrossRefGoogle Scholar
  41. Mills K, Schillereff D, Saulnier-Talbot É, Gell P, Anderson NJ, Arnaud F, Dong X, Jones M, McGowan S, Massaferro J, Moorhouse H, Perez L, Ryves DB (2017) Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle. Wiley Interdiscip Rev Water 4:e1195.  https://doi.org/10.1002/wat2.1195 CrossRefGoogle Scholar
  42. Niessen F (1987) Sedimentologische, geophysikalische und geochemische Untersuchungen zur Entstehung und Ablagerungsgeschichte des Luganersees (Schweiz). Mitteilungen aus dem geologischen Institut der eidg. Technischen Hochschule und der Universität Zürich, Institut der Eidg. Technischen Hochschule und der Universität Zürich, Zürich, p 332Google Scholar
  43. Nordmeyer, H, Lanzetta, L, Nicollin, B (1978) Bathymetric map of Lake Lugano. European Community Information ServiceGoogle Scholar
  44. Ohlendorf C, Sturm M (2008) A modified method for biogenic silica determination. J Paleolimnol 39:137–142CrossRefGoogle Scholar
  45. Palmisano DF (2008) Ponte Tresa, Terra ed Acque: Documenti per una storia del territorio., Edizioni A. Ponte Tresa. Archivo storico di Ponte Tresa CH, vol 7. Ponte Tresa, p 300Google Scholar
  46. R Core Team (2016) R: a language and environment for statistical computingGoogle Scholar
  47. Rein B, Sirocko F (2002) In-situ reflectance spectroscopy—analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954.  https://doi.org/10.1007/s00531-002-0264-0 CrossRefGoogle Scholar
  48. Rein B, Lückge A, Reinhardt L, Sirocko F, Wolf A, Dullo WC (2005) El Niño variability off Peru during the last 20,000 years. Paleoceanography 20:1–17.  https://doi.org/10.1029/2004PA001099 CrossRefGoogle Scholar
  49. Reuss N, Conley DJ, Bianchi TS (2005) Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Mar Chem 95:283–302.  https://doi.org/10.1016/j.marchem.2004.10.002 CrossRefGoogle Scholar
  50. Salmaso N, Morabito G, Garibaldi L, Mosello R (2007) Trophic development of the deep lakes south of the Alps: a comparative analysis. Fundam Appl Limnol/Arch für Hydrobiol 170:177–196.  https://doi.org/10.1127/1863-9135/2007/0170-0177 CrossRefGoogle Scholar
  51. Sanger JE (1988) Fossil pigments in paleoecology and paleolimnology. Palaeogeogr Palaeoclimatol Palaeoecol 62:343–359.  https://doi.org/10.1016/0031-0182(88)90061-2 CrossRefGoogle Scholar
  52. Saunders KM, Kamenik C, Hodgson DA, Hunziker S, Siffert L, Fischer D, Fujak M, Gibson JAE, Grosjean M (2012) Late Holocene changes in precipitation in northwest Tasmania and their potential links to shifts in the Southern Hemisphere westerly winds. Glob Planet Change 92–93:82–91.  https://doi.org/10.1016/j.gloplacha.2012.04.005 CrossRefGoogle Scholar
  53. Schillereff DN (2015) A review of in situ measurement techniques for investigating suspended sediment dynamics in lakes. Geomorphol Tech (Online Ed) Br Soc Geomorphol Lond 3:1–12Google Scholar
  54. Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154.  https://doi.org/10.1023/A:1023270324800 CrossRefGoogle Scholar
  55. Schultheiss PJ, Weaver PPE (1992) Multi-sensor core logging for science and industry. In: Dorman CE (ed) OCEANS 92 proceedings: mastering the oceans through technology, 2nd edn. IEEE, Newport, pp 608–613CrossRefGoogle Scholar
  56. Simona M (2003) Winter and spring mixing depths affect the trophic status and composition of phytoplankton in the northern meromictic basin of Lake Lugano. J Limnol 62:190–206.  https://doi.org/10.4081/jlimnol.2003.190 CrossRefGoogle Scholar
  57. Smith VH (1998) Cultural eutrophication of inland, estuarine, and coastal waters. In: Successes, limitations, front. ecosyst. sci. Springer, New York, pp 7–49Google Scholar
  58. Swain EB (1985) Measurement and interpretation of sedimentary pigments. Freshw Biol 15:53–75CrossRefGoogle Scholar
  59. Tylmann W, Bonk A, Goslar T, Wulf S, Grosjean M (2016) Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: problems and implications. Quat Geochronol 32:1–10.  https://doi.org/10.1016/j.quageo.2015.11.004 CrossRefGoogle Scholar
  60. Veronesi ML, Barbieri A, Hanselmann KW (2002) Phosphorus, carbon and nitrogen enrichment during sedimentation in a seasonally anoxic lake (Lake Lugano, Switzerland). J Limnol 61:215–223.  https://doi.org/10.4081/jlimnol.2002.215 CrossRefGoogle Scholar
  61. von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. Holocene 19:873–881.  https://doi.org/10.1177/0959683609336573 CrossRefGoogle Scholar
  62. von Gunten L, Grosjean M, Kamenik C, Fujak M, Urrutia R (2012) Calibrating biogeochemical and physical climate proxies from non-varved lake sediments with meteorological data: methods and case studies. J Paleolimnol 47:583–600.  https://doi.org/10.1007/s10933-012-9582-9 CrossRefGoogle Scholar
  63. Wirth SB, Gilli A, Niemann H, Dahl TW, Ravasi D, Sax N, Hamann Y, Peduzzi R, Peduzzi S, Tonolla M, Lehman MF, Anselmetti FS (2013) Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: the example of meromictic Lake Cadagno (Swiss Alps). Geochim Cosmochim Acta 120:220–238.  https://doi.org/10.1016/j.gca.2013.06.017 CrossRefGoogle Scholar
  64. Zolitschka B, Francus P, Ojala AEK, Schimmelmann A (2015) Varves in lake sediments—a review. Quat Sci Rev 117:1–41.  https://doi.org/10.1016/j.quascirev.2015.03.019 CrossRefGoogle Scholar
  65. Züllig H (1982) Untersuchungen über die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweizerische Zeitschrift für Hydrol 44:1–98.  https://doi.org/10.1007/BF02502191 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oeschger Centre for Climate Change Research, University of BernBernSwitzerland
  2. 2.Institute of Geography, University of BernBernSwitzerland

Personalised recommendations