Advertisement

Quantifying the effects of hydrological changes on long-term water quality trends in temperate reservoirs: insights from a multi-scale, paleolimnological study

  • Leanne Elchyshyn
  • Jean-Olivier Goyette
  • Émilie Saulnier-Talbot
  • Roxane Maranger
  • Christian Nozais
  • Christopher T. Solomon
  • Irene Gregory-Eaves
Original paper
  • 125 Downloads

Abstract

Declining water quality in reservoirs is of growing concern in many regions, yet there is still little understanding of long-term water quality trends in these systems. Across the landscape, reservoirs have diverse origins, functions, and operational strategies. In temperate environments, winter water-level drawdown is a common operational practice in reservoirs but the long-term impacts of this hydrological modification has not been extensively studied. We paired a comparative, pre-dam-to-contemporary study (i.e. a top–bottom design) of 12 reservoirs with a detailed paleolimnological study of a focal lake to generate quantitative insights into the relative effect of hydrological changes vs. landscape and climatic drivers on water quality. The focal reservoir, Grand Lac Saint-François, is of relatively similar morphometry, geography, and limnology to our other sites, and has experienced annual winter water-level drawdown of ~ 5 m since it was dammed approximately 100 years ago. Based on our top–bottom analysis, we did not find strong correlations between long-term changes in water quality (i.e. diatom-inferred TP estimates) and winter water-level drawdown amplitudes. Instead, reservoir morphometry and watershed characteristics (i.e. geography, maximum depth, and cropland areas) appeared to be stronger drivers of trends across the region. From the detailed paleolimnological analysis, we found that sedimentary pigments and DI-TP concentrations significantly increased over the last century based on Mann–Kendall trend analyses. Breakpoint analyses showed that changes in biological-proxy trends, as well as the sedimentology (i.e. lithology and accumulations rates), coincided with dam construction and the onset of water level regulation. However, given the high variability in metrics and the extent of water level monitoring records, we were unable to quantitatively associate the impacts of drawdown with water quality trends at Grand Lac Saint-François. Conversely, we did find that watershed nutrient surpluses from livestock farming, and warming temperatures were significant explanatory variables of water quality metrics.

Keywords

Water quality Reservoir Drawdown Water level fluctuation (WLF) Land use Climate change 

Notes

Acknowledgements

This project was a joint effort among many lake organisations, funding agencies and universities including Conseil Régional de l’Environnement Chaudière-Appalaches (CRECA), Parc National de Frontenac, Regroupement pour la Protection du Grand Lac St- François (RPGLSF), Fondation de la Faune du Québec, Centre de la Science de la Biodiversité du Québec (CSBQ), MITACS and WSP Global. Additional funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). We are most grateful to Cristian Correa’s assistance in the field and with the preliminary reservoir selection process, to Gabrielle Trottier, Raphaelle Thomas, Audrey Pilon, Julie-Anne Dorval and Melanie Massey who helped in the field and in the lab, and to Leen Stephan for assistance in the lab.

Supplementary material

10933_2018_27_MOESM1_ESM.tif (9.5 mb)
Supplementary material 1 (TIF 9743 kb)
10933_2018_27_MOESM2_ESM.tif (5.9 mb)
Supplementary material 2 (TIF 6019 kb)
10933_2018_27_MOESM3_ESM.tif (10 mb)
Supplementary material 3 (TIF 10214 kb)
10933_2018_27_MOESM4_ESM.tif (9.5 mb)
Supplementary material 4 (TIF 9743 kb)
10933_2018_27_MOESM5_ESM.tif (5.9 mb)
Supplementary material 5 (TIF 6019 kb)
10933_2018_27_MOESM6_ESM.tif (5.9 mb)
Supplementary material 6 (TIF 6019 kb)
10933_2018_27_MOESM7_ESM.tif (5.9 mb)
Supplementary material 7 (TIF 6019 kb)
10933_2018_27_MOESM8_ESM.tif (5.9 mb)
Supplementary material 8 (TIF 6019 kb)
10933_2018_27_MOESM9_ESM.tif (23 mb)
Supplementary material 9 (TIF 23566 kb)
10933_2018_27_MOESM10_ESM.tif (46 mb)
Supplementary material 10 (TIF 47132 kb)

References

  1. Appleby PG, Richardson N, Smith JT (1993) The use of radionuclide records for Chernobyl and weapons test fallout for assessing the reliability of 210Pb in dating very recent sediments. Verh Internat Verein Limnol 25:266–269Google Scholar
  2. Aroviita J, Hämäläinen H (2008) The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 613:45–56CrossRefGoogle Scholar
  3. Bakker ES, Hilt S (2016) Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquat Ecol 50:485–498CrossRefGoogle Scholar
  4. Baldwin DS, Gigney H, Wilson JS, Watson G, Boulding AN (2008) Drivers of water quality in a large water storage reservoir during a period of extreme drawdown. Water Res 42:4711–4724CrossRefGoogle Scholar
  5. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol J, Birks H, Last W (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, Dordrecht, pp 155–190Google Scholar
  6. Beaulieu M, Pick F, Gregory-Eaves I (2013) Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol Oceanogr 58:1736–1746CrossRefGoogle Scholar
  7. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  8. Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267CrossRefGoogle Scholar
  9. Brothers S, Vermaire JC, Gregory-Eaves I (2008) Empirical models for describing recent sedimentation rates in lakes distributed across broad spatial scales. J Paleolimnol 40:1003–1019CrossRefGoogle Scholar
  10. Canada Dominion Bureau of Statistics (1901–2012) 1901–2011 Census of population/census of agriculture. Statistics Canada, OttawaGoogle Scholar
  11. Cooley PM, Franzin WG (2008) Predicting the spatial mud energy and mud deposition boundary depth in a small boreal reservoir before and after draw down. Lake Reserv Manage 24:261–272CrossRefGoogle Scholar
  12. Daoudi M, Charest R (2008) Chapitre 7- L’histoire. Synthèse des connaissances du Parc national de Frontenac. Parc national de Frontenac, Parcs QuébecGoogle Scholar
  13. Evtimova VV, Donohue I (2016) Water-level fluctuations regulate the structure and functioning of natural lakes. Freshwat Biol 61:251–264CrossRefGoogle Scholar
  14. Fallu M-A, Allaire N, Pienitz R (2000) In: Cramer J (ed) Freshwater diatoms from northern Québec and Labrador (Canada). Berlin/Stuttgart, p 200Google Scholar
  15. Glew JR (1988) A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol 1:235–239CrossRefGoogle Scholar
  16. Glew JR (1989) A new trigger mechanism for sediment samplers. J Paleolimnol 2:241–243CrossRefGoogle Scholar
  17. Goyette J-O, Bennett EM, Howarth RW, Maranger R (2016) Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence Basin over 110 years and impacts on riverine export. Glob Biogeochem Cycles 30:1000–1014CrossRefGoogle Scholar
  18. Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP (1999a) Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756CrossRefGoogle Scholar
  19. Hall RI, Leavitt PR, Dixit AS, Quinlan R, Smol JP (1999b) Limnological succession in reservoirs: a paleolimnological comparison of two methods of reservoir formation. Can J Fish Aquat Sci 56:1109–1121CrossRefGoogle Scholar
  20. Hambright KD, Zohary T, Eckert W, Schwartz SS, Schelske CL, Laird KR, Leavitt PR (2008) Exploitation and destabilization of a warm, freshwater ecosystem through engineered hydrological change. Ecol Appl 18:1591–1603CrossRefGoogle Scholar
  21. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  22. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  23. Jeffrey SW, Mantoura RFC, Bjørnland T (1997) Data for the identification of 47 key phytoplankton pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, ParisGoogle Scholar
  24. Keatley BE, Bennett EM, MacDonald GK, Taranu ZE, Gregory-Eaves I (2011) Land-use legacies are important determinants of lake eutrophication in the anthropocene. PLoS ONE 6:e15913CrossRefGoogle Scholar
  25. Kennedy RH (2005) Toward integration in reservoir management. Lake Reserv Manage 21:128–138CrossRefGoogle Scholar
  26. Kimmel BL, Groeger AW (1986) Limnological and ecological changes associated with reservoir aging. In: Hall GE, Van den Avyle MJ (eds) Reservoir fisheries management: strategies for the 80’s. American Fisheries Society, BethesdaGoogle Scholar
  27. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gerloff J, Heyning H, Mollenhauer D (eds). Süsswasserflora von Mitteleuropa, Band 2/1, 2/2, 2/3, 2/4. Gustav Fischer Verlag, StuttgartGoogle Scholar
  28. Lavoie I, Hamilton PB, Campeau S, Grenier M, Dillon PJ (2008) Guide d’identification des diatomées des rivières de l’Est du Canada. PUQ, QuébecGoogle Scholar
  29. Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, DordrechtGoogle Scholar
  30. Legendre P, Legendre L (2012) Numerical ecology, 3rd English edn. Elsevier, AmsterdamGoogle Scholar
  31. Leira M, Cantonati M (2008) Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613:171–184CrossRefGoogle Scholar
  32. Mills EL, Leach JH, Carlton JT, Secor CL (1993) Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. J Great Lakes Res 19:1–54CrossRefGoogle Scholar
  33. Ministère du Développement durable de l’Environnement et de la Lutte contre les changements climattiques (2009–2014) Réseau de surveillance volontaire des lacs: Grand lac Saint-François. Gouvernement du Québec, QuébecGoogle Scholar
  34. Miranda LE, Krogman RM (2015) Functional age as an indicator of reservoir senescence. Fisheries 40:170–176CrossRefGoogle Scholar
  35. Naselli-Flores L, Barone R (2005) Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548:85–99CrossRefGoogle Scholar
  36. Ostrofsky ML (1978) Trophic changes in reservoirs; an hypothesis using phosphorus budget models. Int Rev Hydrobiol 63:481–499CrossRefGoogle Scholar
  37. Ostrofsky ML, Duthie HC (1978) An approach to modelling productivity in reservoirs. Verh Internat Verein Limnol 20:1562–1567Google Scholar
  38. Poulin S, Charest R (2008) Chapitre 4—L’hydrologie. Synthèse des connaissances du parc national de Frontenac. Parc national de Frontenac, Parcs QuébecGoogle Scholar
  39. Rolland DC, Bourget S, Warren A, Laurion I, Vincent WF (2013) Extreme variability of cyanobacterial blooms in an urban drinking water supply. J Plankton Res 35:744–758CrossRefGoogle Scholar
  40. Rooney N, Kalff J, Habel C (2003) The role of submerged macrophyte beds in phosphorus and sediment accumulation in Lake Memphremagog, Quebec, Canada. Limnol Oceanogr 48:1927–1937CrossRefGoogle Scholar
  41. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754Google Scholar
  42. Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304CrossRefGoogle Scholar
  43. Sanchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200CrossRefGoogle Scholar
  44. Sánchez-Carrillo S, Alatorre LC, Sánchez-Andrés R, Garatuza-Payán J (2007) Eutrophication and sedimentation patterns in complete exploitation of water resources scenarios: an example from northwestern semi-arid Mexico. Environ Monit Assess 132:377–393CrossRefGoogle Scholar
  45. Sandgren P, Snowball I (2001) Application of mineral magnetic techniques to paleolimnology. In: Last W, Smol J (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, DordrechtGoogle Scholar
  46. Schroeder LA, Martin SC, Kerns GJ, McLean CE (2016) Diatom assemblages in a reservoir sediment core track land-use changes in the watershed. J Paleolimnol 55:17–33CrossRefGoogle Scholar
  47. Serieyssol CA, Edlund MB, Kallemeyn LW (2009) Impacts of settlement, damming, and hydromanagement in two boreal lakes: a comparative paleolimnological study. J Paleolimnol 42:497–513CrossRefGoogle Scholar
  48. Shaw V, Bennett E, Gregory-Eaves I (2011) Conservation of a transboundary lake: historical watershed and paleolimnological analyses can inform management strategies. Lake Reserv Manag 27:355–364CrossRefGoogle Scholar
  49. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, OxfordGoogle Scholar
  50. Straškraba M, Tundisi JG, Duncan A (1993) State-of-the-art of reservoir limnology and water quality management. In: Straškraba M, Tundisi JG, Duncan A (eds) Comparative reservoir limnology and water quality management. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  51. Taranu ZE, Gregory-Eaves I (2008) Quantifying relationships among phosphorus, agriculture, and lake depth at an inter-regional scale. Ecosystems 11:715–725CrossRefGoogle Scholar
  52. Taranu ZE, Gregory-Eaves I, Leavitt P, Bunting L, Buchaca T, Catalan J, Domaizon I, Guilizzoni P, Lami L, McGowan S, Moorhouse H, Morabito G, Pick F, Stevenson MA, Thompson PL, Vinebrooke RD (2015) Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett 18:375–384CrossRefGoogle Scholar
  53. Thornton KW, Kennedy RH, Carroll JH, Walker WW, Gunkel RC, Ashby S (1980) Reservoir sedimentation and water quality—an heuristic model. In: Stefan HG (ed) Surface water impoundments. American Society of Civil Engineers, New YorkGoogle Scholar
  54. Tremblay R, Pienitz R, Legendre P (2014) Reconstructing phosphorus levels using models based on the modern diatom assemblages of 55 lakes in southern Quebec. Can J Fish Aquat Sci 71:887–914CrossRefGoogle Scholar
  55. Turgeon K, Solomon CT, Nozais C, Gregory-Eaves I (2016) Do novel ecosystems follow predictable trajectories? Testing the trophic surge hypothesis in reservoirs using fish. Ecosphere 12:1–17Google Scholar
  56. Turner MA, Huebert DB, Findlay DL, Hendzel LL, Jansen WA, Bodaly RA, Armstrong LM, Kasian SEM (2005) Divergent impacts of experimental lake-level drawdown on planktonic and benthic plant communities in a boreal forest lake. Can J Fish Aquat Sci 62:991–1003CrossRefGoogle Scholar
  57. Vermaire JC, Prairie YT, Gregory-Eaves I (2012) Diatom-inferred decline of macrophyte abundance in lakes of southern Quebec, Canada. Can J Fish Aquat Sci 69:511–524CrossRefGoogle Scholar
  58. Wantzen KM, Rothhaupt K-O, Mörtl M, Cantonati M, László G, Fischer P (2008) Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia 613:1–4CrossRefGoogle Scholar
  59. Watson SB, McCauley E, Downing JA (1997) Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:487–495CrossRefGoogle Scholar
  60. Weckström K, Juggins S (2006) Coastal diatom–environment relationships from the Gulf of Finland, Baltic Sea. J Phycol 42:21–35CrossRefGoogle Scholar
  61. White MS, Xenopoulos MA, Metcalfe RA, Somers KM, Rosenfeld J (2011) Water level thresholds of benthic macroinvertebrate richness, structure, and function of boreal lake stony littoral habitats. Can J Fish Aquat Sci 68:1695–1704CrossRefGoogle Scholar
  62. Yang XD, Dong XH, Gao G, Pan HX, Wu JL (2005) Relationship between surface sediment diatoms and summer water quality in shallow lakes of the middle and lower reaches of the Yangtze River. J Integr Plant Biol 47:153–164CrossRefGoogle Scholar
  63. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar
  64. Zohary T, Ostrovsky I (2011) Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1:47–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.McGill UniversityMontrealCanada
  2. 2.Université de MontréalMontrealCanada
  3. 3.Université du Québec à RimouskiRimouskiCanada
  4. 4.Cary Institute of Ecosystem StudiesMillbrookUSA

Personalised recommendations