Advertisement

Journal of Paleolimnology

, Volume 60, Issue 1, pp 77–96 | Cite as

Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments: A case study from Herschel Island, Yukon (Canada)

  • Michael Fritz
  • Ingmar Unkel
  • Josefine Lenz
  • Konrad Gajewski
  • Peter Frenzel
  • Nathalie Paquette
  • Hugues Lantuit
  • Lisa Körte
  • Sebastian Wetterich
Original paper

Abstract

Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future.

Keywords

Arctic Permafrost Athalassic subsaline lake XRF scanning Pore-water hydrochemistry Ostracoda 

Notes

Acknowledgements

We wish to express our thanks to the Yukon Territorial Government and the Yukon Parks (Herschel Island Qiqiktaruk Territorial Park). The authors acknowledge the support of the Aurora Research Institute (ARI, Inuvik) for the field component. This study was partly funded by the German Federal Ministry of Education and Research (BMBF Grant No. CAN 09/001, 01DM12002), the German Science Foundation (DFG Grant No. LA 2399/3-1), the Helmholtz Association (Grant No. VH-NG-801), a dissertation stipend by the Potsdam University and a fellowship by the Association for Canadian Studies awarded to JL, and by a fellowship awarded to MF by the German Federal Environmental Foundation (DBU) (Grant No. 20008/953) and the Daimler and Benz Foundation (Grant No. 32-02/15). KG and NP were supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). The study contributes to the Arctic Ecological Network (Arc-EcoNet) funded by the BMBF (Grant No. 01DJ14003). Field support was provided by Boris Radosavljevic, Gerald Müller, Gregory De Pascale, and Samuel McLeod. Analytical support was provided by Lutz Schirrmeister (AWI) for modern marine ostracods, by Antje Eulenburg (AWI) with hydrochemical analyses and by Volker Wennrich and Sonja Berg (University of Cologne, Germany) with XRF scanning.

Supplementary material

10933_2018_25_MOESM1_ESM.pdf (177 kb)
Supplementary material 1 (PDF 177 kb)
10933_2018_25_MOESM2_ESM.pdf (49 kb)
Supplementary material 2 (PDF 49 kb)
10933_2018_25_MOESM3_ESM.pdf (37 kb)
Supplementary material 3 (PDF 37 kb)
10933_2018_25_MOESM4_ESM.pdf (1 mb)
Supplementary material 4 (PDF 1052 kb)
10933_2018_25_MOESM5_ESM.pdf (389 kb)
Supplementary material 5 (PDF 389 kb)
10933_2018_25_MOESM6_ESM.pdf (45 kb)
Supplementary material 6 (PDF 44 kb)
10933_2018_25_MOESM7_ESM.pdf (101 kb)
Supplementary material 7 (PDF 101 kb)
10933_2018_25_MOESM8_ESM.pdf (282 kb)
Supplementary material 8 (PDF 281 kb)

References

  1. Alley RB (2000) The Younger Dryas cold interval as viewed from central Greenland. Quat Sci Rev 19:213–226CrossRefGoogle Scholar
  2. Alley RB, Ágústsdóttir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1123–1149CrossRefGoogle Scholar
  3. Booth RK, Jackson ST, Forman SL, Kutzbach JE, Bettis EA III, Kreigs J, Wright DK (2005) A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages. Holocene 15:321–328CrossRefGoogle Scholar
  4. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  5. Bronk Ramsey C (2009a) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  6. Bronk Ramsey C (2009b) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51:1023–1045CrossRefGoogle Scholar
  7. Bunbury J, Gajewski K (2009) Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quat Sci Rev 28:354–369CrossRefGoogle Scholar
  8. Burn CR (1997) Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. Can J Earth Sci 34:912–925CrossRefGoogle Scholar
  9. Burn CR, Smith MW (1990) Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory. Permafr Periglac 1:161–175CrossRefGoogle Scholar
  10. Burn CR, Michel FA, Smith MW (1986) Stratigraphic, isotopic, and mineralogical evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory. Can J Earth Sci 23:79–803CrossRefGoogle Scholar
  11. Burnett AP, Soreghan MJ, Scholz CA, Brown ET (2011) Tropical East African climate change and its relation to global climate: a record from Lake Tanganyika, Tropical East Africa, over the past 90 + kyr. Palaeogeogr Palaeoclimatol Palaeoecol 303:155–167CrossRefGoogle Scholar
  12. CAVM Team (2003) Circumpolar Arctic vegetation map. (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) map no. 1, U.S. Fish and Wildlife Service, Anchorage, AlaskaGoogle Scholar
  13. Chawchai S, Kylander ME, Chabangborn A, Löwemark L, Wohlfarth B (2016) Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat. Boreas 45:180–189CrossRefGoogle Scholar
  14. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York, p 500Google Scholar
  15. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geol Soc Lond Spec Publ 267:51–63CrossRefGoogle Scholar
  16. Cwynar LC (1982) A late-quaternary vegetation history from Hanging Lake, northern Yukon. Ecol Monogr 52:1–24CrossRefGoogle Scholar
  17. Cwynar LC, Spear RW (1991) Reversion of forest to tundra in the central Yukon. Ecology 72:202–212CrossRefGoogle Scholar
  18. Dallimore A, Schröder-Adams CJ, Dallimore SR (2000) Holocene environmental history of thermokarst lakes on Richards Island, Northwest Territories, Canada: thecamoebians as paleolimnological indicators. J Paleolimnol 23:261–283CrossRefGoogle Scholar
  19. De Deckker P (1981) 10. Ostracods of athalassic saline lakes. Hydrobiologia 81–82:131–144CrossRefGoogle Scholar
  20. Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Change Biol 12:2336–2351CrossRefGoogle Scholar
  21. Engstrom DR, Wright HE Jr (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history: studies in palaeolimnology and palaeoecology in honour of Winifred Tutin. Leicester University Press, Leicester, p 411Google Scholar
  22. Environment Canada (2015). http://climate.weather.gc.ca/index_e.html. Accessed October 2015
  23. Fritz M, Wetterich S, Meyer H, Schirrmeister L, Lantuit H, Pollard WH (2011) Origin and characteristics of massive ground ice on Herschel Island (western Canadian Arctic) as revealed by stable water isotope and hydrochemical signatures. Permafr Periglac 22:26–38CrossRefGoogle Scholar
  24. Fritz M, Herzschuh U, Wetterich S, Lantuit H, De Pascale GP, Pollard WH, Schirrmeister L (2012a) Late glacial and Holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada). Quat Res 78:549–560CrossRefGoogle Scholar
  25. Fritz M, Wetterich S, Schirrmeister L, Meyer H, Lantuit H, Preusser F, Pollard WH (2012b) Eastern Beringia and beyond: late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada. Palaeogeogr Palaeocl 319–320:28–45CrossRefGoogle Scholar
  26. Fritz M, Wolter J, Rudaya N, Palagushkina O, Nazarova L, Obu J, Rethemeyer J, Lantuit H, Wetterich S (2016) Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada). Quat Sci Rev 147:279–297CrossRefGoogle Scholar
  27. Fritz M, Unkel I, Lenz J, Gajewski K, Frenzel P, Paquette N, Lantuit H, Körte L, Wetterich S (2018) Radiocarbon dates, porewater hydrochemistry, calcerous microfossils and pollen data from a lake sediment core (PG1967) from Herschel Island (Yukon, Canada). PANGAEA. https://doi.pangaea.de/10.1594/PANGAEA.886875Google Scholar
  28. Gajewski K (2002) Modern pollen assemblages in lake sediments from the Canadian Arctic. Arct Antarct Alp Res 34:26–32CrossRefGoogle Scholar
  29. Gajewski K (2015a) Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland. Glob Planet Change 128:14–23CrossRefGoogle Scholar
  30. Gajewski K (2015b) Impact of Holocene climate variability on Arctic vegetation. Glob Planet Change 133:272–287CrossRefGoogle Scholar
  31. Grosse G, Schirrmeister L, Kunitsky VV, Hubberten H-W (2005) The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast. Permafr Periglac 16:163–172CrossRefGoogle Scholar
  32. Guyard H, Chapron E, St-Onge G, Anselmetti FS, Arnaud F, Magand O, Francus P, Mélières M-A (2007) High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the western French Alps (Lake Bramant, Grandes Rousses Massif). Quat Sci Rev 26:2644–2660CrossRefGoogle Scholar
  33. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  34. Hinkel KM, Eisner WR, Bockheim JG, Nelson FE, Peterson KM, Dai X (2003) Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arct Antarct Alp Res 35:291–300CrossRefGoogle Scholar
  35. Hinkel KM, Frohn RC, Nelson FE, Eisner WR, Beck RA (2005) Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafr Periglac 16:327–341CrossRefGoogle Scholar
  36. Irvine F, Cwynar L, Vermaire J, Rees AH (2012) Midge-inferred temperature reconstructions and vegetation change over the last ~ 15,000 years from Trout Lake, northern Yukon Territory, eastern Beringia. J Paleolimnol 48:133–146CrossRefGoogle Scholar
  37. Jin Z, Wang S, Shen J, Zhang E, Li F, Ji J, Lu X (2001) Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surf Proc Land 26:775–782CrossRefGoogle Scholar
  38. Jones BM, Arp CD (2015) Observing a catastrophic thermokarst lake drainage in northern Alaska. Permafr Periglac 26:119–128CrossRefGoogle Scholar
  39. Kaufman DS, Manley WF (2004) Pleistocene maximum and late Wisconsinan glacier extents across Alaska, U.S.A. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, part II: North America. Elsevier, Amsterdam, pp 9–27CrossRefGoogle Scholar
  40. Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Ruhland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23:529–560CrossRefGoogle Scholar
  41. Kaufman DS, Axford YL, Henderson ACG, McKay NP, Oswald WW, Saenger C, Anderson RS, Bailey HL, Clegg B, Gajewski K, Hu FS, Jones MC, Massa C, Routson CC, Werner Wooller MJ, Yu ZC (2016) Holocene climate changes in eastern Beringia (NW North America)—a systematic review of multi-proxy evidence. Quat Sci Rev 147:312–339CrossRefGoogle Scholar
  42. Koinig K, Shotyk W, Lotter A, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation, and land-use history. J Paleolimnol 4:307–320CrossRefGoogle Scholar
  43. Kokelj SV, Smith CAS, Burn CR (2002) Physical and chemical characteristics of the active layer and permafrost, Herschel Island, western Arctic Coast, Canada. Permafr Periglac 13:171–185CrossRefGoogle Scholar
  44. Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci USA 108:14769–14774CrossRefGoogle Scholar
  45. Kurek J, Cwynar LC, Vermaire JC (2009) A late Quaternary paleotemperature record from Hanging Lake, northern Yukon Territory, eastern Beringia. Quat Res 72:246–257CrossRefGoogle Scholar
  46. Lenz J, Fritz M, Schirrmeister L, Lantuit H, Wooller MJ, Pollard WH, Wetterich S (2013) Periglacial landscape dynamics in the western Canadian Arctic: results from a thermokarst lake record on a push moraine (Herschel Island, Yukon Territory). Palaeogeogr Palaeocl 381–382:15–25CrossRefGoogle Scholar
  47. Lenz J, Jones BM, Wetterich S, Tjallingii R, Fritz M, Arp CD, Rudaya N, Grosse G (2016) Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands. Alsk Arctic Coast Plain Arktos 2:25Google Scholar
  48. Löwemark L, Chen H-F, Yang T-N, Kylander M, Yu E-F, Hsu Y-W, Lee T-Q, Song S-R, Jarvis S (2011) Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. J Asian Earth Sci 40:1250–1256CrossRefGoogle Scholar
  49. Mackay JR (1959) Glacier ice-thrust features of the Yukon Coast. Geogr Bull 13:5–21Google Scholar
  50. Mackay JR (1988) Catastrophic lake drainage, Tuktoyaktuk Peninsula area, District of Mackenzie. Current research part D: interior plains and Arctic Canada, Geological Survey of Canada paper no. 88-1D:83-90Google Scholar
  51. Marsh P, Russell M, Pohl S, Haywood H, Onclin C (2009) Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000. Hydrol Process 23:145–158CrossRefGoogle Scholar
  52. Meisch C (2000) Freshwater Ostracoda of western and central Europe. In: Schwoerbel J, Zwick P (eds) Süßwasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Heidelberg, p 522Google Scholar
  53. Mischke S, Kramer M, Zhang C, Shang H, Herzschuh U, Erzinger J (2008) Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeogr Palaeocl 26:59–76CrossRefGoogle Scholar
  54. Mook WG, van der Plicht J (1999) Reporting 14C activities and concentrations. Radiocarbon 41:227–239CrossRefGoogle Scholar
  55. Murton JB (2001) Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob Planet Change 28:175–192CrossRefGoogle Scholar
  56. Obu J, Lantuit H, Myers-Smith I, Heim B, Wolter J, Fritz M (2017) Effect of terrain characteristics on soil organic carbon and total nitrogen stocks in soils of Herschel Island, western Canadian Arctic. Permafr Periglac 28:92–107CrossRefGoogle Scholar
  57. Pienitz R, Walker IR, Zeeb BA, Smol JP, Leavitt PR (1992) Biomonitoring past salinity changes in an athalassic subarctic lake. Int J Salt Lake Res 1:91–123CrossRefGoogle Scholar
  58. Pienitz R, Smol JP, Last WM, Leavitt PR, Cumming BF (2000) Multi-proxy Holocene paleoclimatic record from a saline lake in the Canadian Subarctic. Holocene 10:673–686CrossRefGoogle Scholar
  59. Pint A, Frenzel P, Fuhrmann R, Scharf B, Wennrich V (2012) Distribution of Cyprideis torosa (Ostracoda) in Quaternary athalassic sediments in Germany and its application for palaeoecological reconstructions. Int Rev Hydrobiol 97:330–355CrossRefGoogle Scholar
  60. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/. Accessed 10 Dec 2015
  61. Rampton VN (1988) Quaternary geology of the Tuktoyaktuk coastlands, Northwest Territories. Memoir 423Google Scholar
  62. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  63. Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeocl 176:207–227CrossRefGoogle Scholar
  64. Ritchie JC, Cwynar LC, Spear RW (1983) Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305:126–128CrossRefGoogle Scholar
  65. Röhl U, Abrams LJ (2000) High-resolution, downhole, and nondestructive core measurements from Site 999 and 1001 in the Caribbean Sea: application to the Late Paleocene Thermal Maximum. Proc Ocean Drill Program Sci Results 165:191–203Google Scholar
  66. Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt W (2014) The impact of the permafrost carbon feedback on global climate. Environ Res Let 9:085003CrossRefGoogle Scholar
  67. Smith CAS, Kennedy CL, Hargrave AE, McKenna KM (1989) Soil and vegetation of Herschel Island. Yukon Soil Survey Report No.1, LRRC Contribution No. 88–26, Agriculture Canada, Whitehorse, Yukon, p 101Google Scholar
  68. Spear RW (1993) The palynological record of Late-Quaternary arctic tree-line in northwest Canada. Rev Palaeobot Palynol 79:99–111CrossRefGoogle Scholar
  69. Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geophys Geosyst 8:Q02004CrossRefGoogle Scholar
  70. van Geel B, Heijnis H, Charman DJ, Thompson G, Engels S (2014) Bog burst in the eastern Netherlands triggered by the 2.8 kyr BP climate event. Holocene 24:1465–1477CrossRefGoogle Scholar
  71. van Huissteden J, Berrittella C, Parmentier FJW, Mi Y, Maximov TC, Dolman AJ (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Change 1:119–123CrossRefGoogle Scholar
  72. Viau AE, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330CrossRefGoogle Scholar
  73. Viau AE, Gajewski K, Sawada MC, Bunbury J (2008) Low- and high-frequency climate variability in eastern Beringia during the past 25000 years. Can J Earth Sci 45:1435–1453CrossRefGoogle Scholar
  74. Wahl HE, Fraser DB, Harvey RC, Maxwell JB (1987) Climate of Yukon. Environ Can Atmos Environ Serv Climatol Stud 40:1–323Google Scholar
  75. Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS III, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:452–456CrossRefGoogle Scholar
  76. Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438CrossRefGoogle Scholar
  77. Whitmore J, Gajewski K, Sawada M, Williams JW, Shuman B, Bartlein PJ, Minckley T, Viau AE, Webb T III, Shafer S, Anderson P, Brubaker L (2005) Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications. Quat Sci Rev 24:1828–1848CrossRefGoogle Scholar
  78. Willemse N, van Dam O, van Helvoort P-J, Dankers R, Brommer M, Schokker J, Valstar T, de Wolf H (2004) Physical and chemical limnology of a subsaline athalassic lake in west Greenland. Hydrobiologia 524:167–192CrossRefGoogle Scholar
  79. Williams JW, Shuman B, Bartlein PJ, Whitmore J, Gajewski K, Sawada M, Minckley T, Shafer S, Viau AE, Webb T III, Anderson PM, Brubaker LB, Whitlock C, Davis OK (2006) An atlas of pollen-vegetation-climate relationships for the United States and Canada. American Association of Stratigraphic Palynologists Foundation, Dallas, p 293Google Scholar
  80. Wolter J, Lantuit H, Fritz M, Macias-Fauria M, Myers-Smith I, Herzschuh U (2016) Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation. Polar Res 35:27489CrossRefGoogle Scholar
  81. Wolter J, Lantuit H, Herzschuh U, Stettner S, Fritz M (2017) Tundra vegetation stability versus lake-basin variability on the Yukon Coastal Plain (NW Canada) during the past three centuries. Holocene 27:1846–1858CrossRefGoogle Scholar
  82. Zabenskie S, Gajewski K (2007) Post-glacial climatic change on Boothia Peninsula, Nunavut, Canada. Quat Res 68:261–270CrossRefGoogle Scholar
  83. Zabenskie S, Peros M, Gajewski K (2006) The use of heavy-liquid in the separation of pollen from Arctic lake sediments. Can Assoc Palynol Newslett 29:5–7Google Scholar
  84. Zazula GD, Hare PG, Storer JE (2009) New radiocarbon-dated vertebrate fossils from Herschel Island: implications for the palaeoenvironments and glacial chronology of the Beaufort Sea coastlands. Arctic 62:273–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Periglacial ResearchAlfred Wegener Institute Helmholtz Center for Polar and Marine ResearchPotsdamGermany
  2. 2.Institute for Ecosystem ResearchChristian-Albrechts-Universität zu KielKielGermany
  3. 3.Institute of Earth and Environmental SciencesUniversity of PotsdamPotsdamGermany
  4. 4.Laboratory for Paleoclimatology and Climatology, Department of Geography, Environment and GeomaticsUniversity of OttawaOttawaCanada
  5. 5.Institute of Earth SciencesFriedrich Schiller University of JenaJenaGermany

Personalised recommendations