Journal of Paleolimnology

, Volume 59, Issue 4, pp 461–477 | Cite as

Impact of recent climate change on Lake Kanas, Altai Mountains (N.W. China) inferred from diatom and geochemical evidence

Original paper


Glacier shrinkage and melting of snow patches caused by the current phase of warming is having a profound impact on lake ecosystems located in glacierized environments at high altitude and/or latitude because it alters the hydrology and the physico-chemistry of the river discharges and catchment runoff. These changes, in turn, have a major impact on the biota of these lakes. In this study, we combined geochemical and diatom analyses of a sediment core retrieved from Lake Kanas (N.W. China) to assess how climate change has affected this ecosystem over the past ~ 100 years. Our results show that the aquatic ecosystem of Lake Kanas was sensitive to changes in the regional climate over that period of time. The lake has been affected by change in hydrology (e.g. influx of glacier meltwater, variations in precipitation) and change in hydrodynamics (water column stability). The variations in abundance and composition of the diatom assemblages observed in the sedimentary record have been subtle and are complex to interpret. The principal changes in the diatom community were: (1) a rise in diatom accumulation rates starting in the AD 1970s that is coeval with changes observed in temperate lakes of the Northern Hemisphere and (2) an increase in species diversity and assemblage turnover and a faster rate-of-change since ~ AD 2000. The diatom community is expected to change further with the projected melting of the Kanas glacier throughout the twenty-first century.


Cyclotella sensu lato Climate warming Glacier meltwater Xinjiang XRF 



We thank Wanna Jia for the coring of sediments from Lake Kanas and Zhongyan Zhang for helping with diatom analysis. We are grateful to two anonymous reviewers for their helpful comments on an earlier version of the manuscript. This project was supported by the National Basic Research Program of China (No. 41571182) and by the National Science Foundation of China (No. 41790422).

Supplementary material

10933_2018_19_MOESM1_ESM.docx (317 kb)
Supplementary material 1 (DOCX 316 kb)


  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Donk EV, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297CrossRefGoogle Scholar
  2. Appleby PG (2000) Radiometric dating of sediment records in European mountain. J Limnol 59(suppl. 1):1–14Google Scholar
  3. Appleby PG (2001) Chronostratigraphic techniques in recent sediment. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediment, vol 1. Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203CrossRefGoogle Scholar
  4. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8CrossRefGoogle Scholar
  5. Bai J (2012) Preliminary analysis on glacier changes characteristics of the Youyi Peak Area in the Altai Mountains in Xinjiang. Doctoral Dissertation. Northwest Normal University (in Chinese)Google Scholar
  6. Bao S (2000) Soil agricultural chemistry analysis. China Agriculture Press, Beijing (in Chinese)Google Scholar
  7. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188CrossRefGoogle Scholar
  8. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediment, vol 3. Terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrect, pp 155–202CrossRefGoogle Scholar
  9. Beaudoin A, Pienitz R, Francus P, Zdanowicz C, St-Onge G (2016) Palaeoenvironmental history of the last six centuries in the Nettilling Lake area (Baffin Island, Canada): a multi-proxy analysis. The Holocene 26:1835–1846CrossRefGoogle Scholar
  10. Béguinot J (2015a) When reasonably stop sampling? How to estimate the gain in newly recorded species according to the degree of supplementary sampling effort. Annu Res Rev Biol 7:300–308CrossRefGoogle Scholar
  11. Béguinot J (2015b) Extrapolation of the species accumulation curve for incomplete species samplings: a new nonparametric approach to estimate the degree of sample completeness and decide when to stop. Annu Res Rev Biol 8:1–9CrossRefGoogle Scholar
  12. Birks HJB (2007) Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. Veg Hist Archaeobot 16:197–202Google Scholar
  13. Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  14. Biskaborn BK, Herzschuh U, Bolshiyanov D, Savelieva L, Diekmann B (2012) Environmental variability in northeastern Siberia during the last ~ 13,300 yr inferred from lake diatoms and sediment–geochemical parameters. Palaeogeogr Palaeoclim Palaeoecol 329–330:22–36CrossRefGoogle Scholar
  15. Brenner M, Peplow AJ, Schelske CL (1994) Disequilibrium between 226Ra and supported 210Pb in a sediment core from a shallow Florida lake. Limnol Oceanogr 39:1222–1227CrossRefGoogle Scholar
  16. Brown GH (2002) Glacier meltwater hydrochemistry. Appl Geochem 17:855–883CrossRefGoogle Scholar
  17. Catalan J, Pla-Rabés S, Wolfe AP, Smol JP, Rühland KM, Anderson NJ, Kopáček J, Stuchlík E, Schmidt R, Koinig KA, Camarero L, Flower RJ, Heiri O, Kamenik C, Korhola A, Leavitt PR, Psenner R, Renberg I (2013) Global change revealed by paleolimnological records from remote lakes: a review. J Paleolimnol 49:513–535CrossRefGoogle Scholar
  18. Engstrom DR, Swain EB, Kingston JC (1985) A paleolimnological record of human disturbance from Harvey’s Lake, Vermont: geochemistry, pigments and diatoms. Fresh Biol 15:261–288CrossRefGoogle Scholar
  19. Fedotov AP, Trunova VA, Enushchenko IV, Vorobyeva SS, Stepanova OG, Petrovskii SK, Melgunov MS, Zvereva VV, Krapivina SM, Zheleznyakova TO (2015) A 850-year record climate and vegetation changes in East Siberia (Russia), inferred from geochemical and biological proxies of lake sediments. Environ Earth Sci 73:7297–7314CrossRefGoogle Scholar
  20. Gao S (1986) A study of the genesis of Kanas Lake. J Xinjiang Univ 4:68–76 (in Chinese)Google Scholar
  21. Gao Q, Rioual P, Chu G (2016) Lateglacial and early Holocene climatic fluctuations recorded in the diatom flora of Xiaolongwan maar lake, NE China. Boreas 45:61–75CrossRefGoogle Scholar
  22. Genkal SI, Lepskaya EV (2014) Centric diatom algae of volcanic Verkhneavachinsk Lakes (Kamchatka). Inland Water Biol 7:1–9CrossRefGoogle Scholar
  23. Han F, Yang Z, Wang H, Xu X (2011) Estimating willingness to pay for environment conservation: a contingent valuation study of Kanas Nature Reserve, Xinjiang, China. Environ Monit Assess 180:451–459CrossRefGoogle Scholar
  24. Hausmann S, Lotter AF (2001) Morphological variation within the diatom taxon Cyclotella comensis and its importance for quantitative temperature reconstructions. Fresh Biol 46:1323–1333CrossRefGoogle Scholar
  25. Hobbs WO, Telford RJ, Birks HJB, Saros J, Hazewinkel RRO, Perren B, Saulnier-Talbot É, Wolfe AP (2010) Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS ONE 5:e10026CrossRefGoogle Scholar
  26. Hofmann G, Werum M, Lange-Bertalot H (2011) Diatomeen im Süßwasser-Benthos von Mitteleuropa. A.R.G. Gantner Verlag K.G., Ruggell, p 908Google Scholar
  27. Holm TM, Koinig KA, Andersen T, Donal E, Hormes A, Klaveness D, Psenner R (2012) Rapid physiochemical changes in the high Arctic Lake Kongressvatn caused by recent climate change. Aquat Sci 74:385–395Google Scholar
  28. IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  29. Jansen E, Overpeck J, Briffa KR et al. (2007) Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497Google Scholar
  30. Johnson BE, Noble PJ, Heyvaert AC, Chandra S, Karlin R (2017) Anthropogenic and climatic influences on the diatom flora within the Fallen Leaf Lake watershed, Lake Tahoe Basin, California over the last millennium. J Paleolimnol.
  31. Juggins S, Anderson NJ, Ramstack Hobbs JM, Heathcote AJ (2013) Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. J Paleolimnol 49:373–390CrossRefGoogle Scholar
  32. Kauppila T, Kanninen A, Viitasalo M, Räsänen J, Meissner K, Mattila J (2012) Comparing long term sediment records to current biological quality element data—implications for bioassessment and management of a eutrophic lake. Limnologica 42:19–30CrossRefGoogle Scholar
  33. Kies A, Nawrot A, Tosheva Z, Jania J (2011) Natural radioactive isotopes in glacier meltwater studies. Geochem J 45:423–429CrossRefGoogle Scholar
  34. Kling H, Håkansson H (1988) A light and electron microscope study of Cyclotella species (Bacillariophyceae) from central and northern Canadian lakes. Diatom Res 3:55–82CrossRefGoogle Scholar
  35. Krammer K, Lange-Bertalot H (1986) Süsswasserflora von Mitteleuropa. Teil 2/1. Bacillariophyceae (Naviculaceae). Gustav Fisher Verlag, Stuttgart, p 876Google Scholar
  36. Krammer K, Lange-Bertalot H (1988) Süsswasserflora von Mitteleuropa. Teil 2/2. Bacillariophyceae (Bacillariaceae, Epithemiaceae, Surirellaceae). Gustav Fisher Verlag, Stuttgart, p 596Google Scholar
  37. Krammer K, Lange-Bertalot H (1991a) Süsswasserflora von Mitteleuropa. Teil 2/3. Bacillariophyceae (Centrales, Fragilariaceae, Eunotiaceae). Gustav Fisher Verlag, Stuttgart, p 577Google Scholar
  38. Krammer K, Lange-Bertalot H (1991b) Süsswasserflora von Mitteleuropa. Teil2/4. Bacillariophyceae (Achnanthaceae, kritische Ergänzungen zu Achnanthes s. l., Navicula s. str., Gomphonema. Gustav Fisher Verlag, Stuttgart, p 437Google Scholar
  39. Li Y, Liu E, Xiao X, Zhang E, Ji M (2015) Diatom response to Asian monsoon variability during the Holocene in a deep lake at the southeastern margin of the Tibetan Plateau. Boreas 44:785–793CrossRefGoogle Scholar
  40. Li Y, Qiang M, Zhang J, Huang X, Zhou A, Chen J, Wang G, Zhao Y (2017) Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China. Quat Int 452:91–101CrossRefGoogle Scholar
  41. Liu CH, You GX, Pu JC (1982) Glacier inventory of China II: Altay Mountains. anzhou Institute of Glaciology and Cryopedology, Academia Sinica, Lanzhou (in Chinese)Google Scholar
  42. Liu G, Jiang N, Zhang L (1996) Physical and chemical analysis of soil and profile description. Standard Press of China, BeijingGoogle Scholar
  43. Liu X, Herzshuh U, Wang Y, Kuhn G, Yu Z (2014) Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys Res Lett 41:6265–6273CrossRefGoogle Scholar
  44. Liu J, Rühland KM, Chen J, Xu Y, ChenS Chen Q, Huang W, Xu Q, Chen F, Smol JP (2017) Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nature Clim Change 7:190–194CrossRefGoogle Scholar
  45. Lotter AF, Pienitz R, Schmidt R (2010) Diatoms as indicators of environmental change in subarctic and alpine regions. In: Smol JP, Stoermer EF (eds) The diatoms. Applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, New York, New York, pp 231–248CrossRefGoogle Scholar
  46. Mills K, Schillereff D, Saulnier-Talbot É, Gell P, Anderson NJ, Arnaud F, Dong X, Jones M, McGowan S, Massaferro J, Moorhouse H, Perez L, Ryves DB (2017) Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a paleolimnological puzzle. WIREs Water. 4:e1195. CrossRefGoogle Scholar
  47. Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77CrossRefGoogle Scholar
  48. Panizzo VN, Mackay AW, Rose NL, Rioual P, Leng MJ (2013) Recent paleolimnological change recorded in Lake Xiaolongwan, northeast China: climatic versus anthropogenic forcing. Quat Int 290–291:322–334CrossRefGoogle Scholar
  49. Peng Y, Xiao J, Nakamura T, Liu B, Inouchi Y (2005) Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of the Daihai Lake in Inner-Mongolia of North-central China. Earth Planet Sci Lett 233:467–479CrossRefGoogle Scholar
  50. Renberg I (1990) A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90CrossRefGoogle Scholar
  51. Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M (2009) Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quat Sci Rev 28:540–554CrossRefGoogle Scholar
  52. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North America and European lakes. Glob Change Biol 14:2740–2754Google Scholar
  53. Rühland K, Paterson AM, Smol JP (2015) Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–35CrossRefGoogle Scholar
  54. Schaller T, Moor HC, Werli B (1997) Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquat Sci 59:345–361CrossRefGoogle Scholar
  55. Shang H, Wei W, Yuan Y, Yu S, Zhang T (2010) The mean June temperature history of 436a in Altay reconstructed from tree ring. J Arid Land Resour Environ 24:116–121Google Scholar
  56. Shi T, Shi H (2016) Tourist attitudes toward declaring a world natural heritage program in the Kanas component, Xinjiang, China. In: Proceedings of the 2nd international conference on social science and DevelopmentGoogle Scholar
  57. Sienkiewicz E, Gąsiorowski M, Migała K (2017) Unusual reaction of diatom assemblage changes during the last millennium: a record from Spitsbergen lake. J Paleolimnol 58:73–87CrossRefGoogle Scholar
  58. Slemmons KEH, Saros JE, Stone JR, McGowan S, Hess CT, Cahl D (2015) Effects of glacier meltwater on the algal sedimentary record of an alpine lake in the central US Rocky Mountains throughout the late Holocene. J Paleolimnol 53:385–399CrossRefGoogle Scholar
  59. Slemmons KEH, Medford A, Hall BL, Stone JR, McGowan S, Lowell T, Kelly M, Saros JE (2017a) Changes in glacial meltwater alter algal communities in lakes of Scoresby Sund, Renland, East Greenland throughout the Holocene: abrupt reorganizations began 1000 years before present. The Holocene 27:929–940CrossRefGoogle Scholar
  60. Slemmons KEH, Rodgers ML, Stone JR, Saros JE (2017b) Nitrogen subsidies in glacial meltwaters have altered planktonic diatom communities in lakes of the US Rocky Mountains for a least a century. Hydrobiologia 800:129–144CrossRefGoogle Scholar
  61. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102:4397–4402CrossRefGoogle Scholar
  62. Stepanova OG, Trunova VA, Zvereva VV, Melgunov MS, Fedotov AP (2015) Reconstruction of glacier fluctuations in the East Sayan, Baikalsky and Kodar Ridges (East Siberia, Russia) during the last 210 years based on high-resolution geochemical proxies from proglacial lake bottom sediments. Environ Earth Sci 74:2019–2040CrossRefGoogle Scholar
  63. ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user’s guide, software for ordination (version 5.0). Biometris, WageningenGoogle Scholar
  64. Tolotti M, Corradini F, Boscaini A, Calliari D (2007) Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578:147–156CrossRefGoogle Scholar
  65. Torres NT, Och LM, Hauser PC, Furrer G, Brandl H, Vologina E, Sturm M, Bürgmann H, Müller B (2014) Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Environ Sci Process Impacts 16:879–889CrossRefGoogle Scholar
  66. Vorobyeva SS, Trunova VA, Stepanova OG, Zvereva VV, Petrovskii SK, Melgunov MS, Zheleznyakova TO, Chechetkina LG, Fedotov AP (2015) Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia). Environ Earth Sci 74:2055–2063CrossRefGoogle Scholar
  67. Wang L, Rioual P, Panizzo VN, Lu H, Gu Z, Chu G, Yang D, Han J, Liu J, Mackay AW (2012) A 1000-yr record of environmental change in NE China indicated by diatom assemblages from maar lake Erlongwan. Quat Res 78:24–34CrossRefGoogle Scholar
  68. Wang Q, Yang X, Anderson NJ, Dong X (2016) Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China). Quat Res 86:1–12CrossRefGoogle Scholar
  69. Wei J, Liu S, Xu J, Guo W, Bao W, Shangguan D, Jiang Z (2015) Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images. J Mt Sci 12:330–343CrossRefGoogle Scholar
  70. Wolfe AP, Hobbs WO, VBirks HH, Briner JP, Holmgren SU, Ingólfsson Ó, Kaushal SS, Miller GH, Pagani M, Saros JE, Vinebrooke RD (2013) Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes. Earth-Sci Rev 116:17–34Google Scholar
  71. Wu J, Liu W, Zeng H, Ma L, Bai R (2014) Water quantity and quality of six lakes in the arid Xinjiang Region, NW China. Environ Process 1:115–125CrossRefGoogle Scholar
  72. Wunsam S, Schmidt R, Klee R (1995) Cyclotella-taxa (Bacillariophyceae) in lakes of the alpine region and their relationship to environmental variables. Aquat Sci 57:360–386CrossRefGoogle Scholar
  73. Yang J, Ryan C, Zhang L (2014) Sustaining culture and seeking a Just Destination: governments, power and tension a life-cycle approach to analysing tourism development in an ethnic-inhabited scenic area in Xinjiang, China. J Sustain Tour 22:1151–1174CrossRefGoogle Scholar
  74. Yang P, Xia J, Zhang Y, Hong S (2017) Temporal and spatial variations of precipitation in Northwest China during 1960–2013. Atm Res 183:283–295CrossRefGoogle Scholar
  75. Zhang C, Feng Z, Yang Q, Gou X, Sun F (2010) Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. The Holocene 20:363–373CrossRefGoogle Scholar
  76. Zhang Y, Enomoto H, Ohata T, Kitabata H, Kadota T, Hirabayashi Y (2016) Projections of glacier change in the Altai Mountains under twenty first century climate scenarios. Clim Dyn 47:2935CrossRefGoogle Scholar
  77. Zhao J, Yin X, Harbor JM, Lai Z, Liu S, Li Z (2013) Quaternary glacial chronology of the Kanas River valley, Altai Mountains, China. Quat Int 311:44–51CrossRefGoogle Scholar
  78. Zhu B, Yu J, Qin X, Rioual P, Zhang Y, Liu Z, Mu Y, Li H, Ren X, Xiong H (2013) Identification of rock weathering and environmental control in arid catchments (northern Xinjiang) of Central Asia. J Asian Earth Sci 66:277–294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Western China’s Environmental SystemLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations