Journal of Paleolimnology

, Volume 58, Issue 3, pp 391–402 | Cite as

Sources of organic matter for bacteria in sediments of Lake Rotsee, Switzerland

  • Yaling Su
  • Marieke Lammers
  • Yongdong Zhang
  • Loes van Bree
  • Zhengwen Liu
  • Gert-Jan Reichart
  • Jack J. Middelburg
Original paper

Abstract

Determination of carbon sources and microbial activity in lake sediment is important for understanding organic carbon preservation and methane production. This study aimed to determine the organic carbon sources and microbial activity over the last 140 years in sediments of methanotrophic Lake Rotsee (Switzerland). We investigated phospholipid-derived fatty acid biomarkers and their stable carbon isotope signatures in the sediments of this eutrophic lake. Strong bacterial activity in the sediment deposited during the 1920s–1960s could account for the relatively low ratio of long-chain to short-chain fatty acid ((C24 + C26 + C28)/(C14 + C16 + C18), TARFA) values, which is consistent with low TOC/TN ratios in the sediment deposited during that interval. The carbon stable isotope records, both bulk and compound-specific, showed greater values at such times, although the offset between the bulk and fatty acids decreased. This implies that the microbial community residing at sediment depths deposited in the 1960s preferentially utilised the compounds derived from the enhanced surface-water productivity at that time. This observation contrasts with data from the depth intervals before and after, when a major portion of the labile organic matter was derived from methane-sourced production. In sediments deposited before ca. 1964, the overall very low fatty acid δ13C values suggest that labile carbon was primarily derived from methanotrophs.

Keywords

Biomarker Phospholipid fatty acids Stable isotopic analysis Methanotrophs 

Supplementary material

10933_2017_9985_MOESM1_ESM.doc (95 kb)
Supplementary material 1 (DOC 95 kb)

References

  1. Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220CrossRefGoogle Scholar
  2. Bastviken D (2009) Methane. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Oxford, pp 783–805CrossRefGoogle Scholar
  3. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100CrossRefGoogle Scholar
  4. Bechtel A, Schubert CJ (2009) Biogeochemistry of particulate organic matter from lakes of different trophic levels in Switzerland. Org Geochem 40:441–454CrossRefGoogle Scholar
  5. Bodelier PL, Frenzel EF (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833Google Scholar
  6. Bodelier PLE, Gillisen MJB, Hordijk K, Sinninghe Damsté JS, Rijpstra WIC, Geenevasen JAJ, Dunfield PF (2009) A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME J 3:606–617CrossRefGoogle Scholar
  7. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95CrossRefGoogle Scholar
  8. Boschker HTS, Kromkamp JC, Middelburg JJ (2005) Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr 50:70–80CrossRefGoogle Scholar
  9. Bourbonnier RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352–359CrossRefGoogle Scholar
  10. Bowman JP (2006) The methanotrophs—the families Methylococcaceae and Methylocystaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Strackebrandt E (eds) The prokaryotes. Springer, New York, pp 266–289CrossRefGoogle Scholar
  11. Bowman JP, Skerratt JH, Nichols PD, Sly LI (1991) Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol Lett 85:15–22CrossRefGoogle Scholar
  12. Bragée P, Choundhary P, Routh J, Boyle JF, Hammarlund D (2013) Lake ecosystemresponses to catchment disturbance and airborne pollution: an 800-year perspective in southern Sweden. J Paleolimnol 50:545–560CrossRefGoogle Scholar
  13. Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771CrossRefGoogle Scholar
  14. Cifuentes LA, Salata GG (2001) Significance of carbon isotope discrimination between bulk carbon and extracted phospholipid fatty acids in selected terrestrial and marine environments. Org Geochem 32:613–621CrossRefGoogle Scholar
  15. Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–568CrossRefGoogle Scholar
  16. Cole JJ, Prairie Y, Caraco N, McDowell W, Tranvik L, Striegl R, Duarte CM, Kortelainen P, Downing J, Middelburg JJ, Melack JM (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184CrossRefGoogle Scholar
  17. Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen, Wiley, Chichester, pp 39–58Google Scholar
  18. Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contributions to lacustrine sediments—II. Org Geochem 11:513–527CrossRefGoogle Scholar
  19. Dalton H, Stirling DI (1982) Co-metabolism. Philos Trans R Soc Lond B 297:481–496CrossRefGoogle Scholar
  20. Deines P, Bodelier PLE, Eller G (2007) Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems. Environ Microbiol 9:1126–1134CrossRefGoogle Scholar
  21. Dickson L, Bull ID, Gates PJ, Evershed RP (2009) A simple modification of a silicic acid lipid fractionation protocol to eliminate free fatty acids from glycolipid and phospholipid fractions. J Microbiol Methods 78:249–254CrossRefGoogle Scholar
  22. Dijkman NA, Kromkamp JC (2006) Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition. Mar Ecol Prog Ser 324:113–125CrossRefGoogle Scholar
  23. Goñi MA, Hedges JI (1995) Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation. Geochim Cosmochim Acta 59:2965–2981CrossRefGoogle Scholar
  24. Goñi MA, Ruttenberg KCR, Eglinton TI (1998) A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim Cosmochim Acta 62:3055–3075CrossRefGoogle Scholar
  25. Grey J (2016) The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Front Ecol Evol 4:1–14CrossRefGoogle Scholar
  26. He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012) Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J 6:1937–1948CrossRefGoogle Scholar
  27. Hinrichs KU, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen B, Schlüter M, Van Weering T (eds) Ocean margin systems. Springer, Berlin, pp 457–477CrossRefGoogle Scholar
  28. Hinrichs KU, Hayes JM, Sylva SP, Brewert PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805CrossRefGoogle Scholar
  29. Ho E, Meyers PA (1994) Variability of early diagenesis in lake sediments: evidence from the sedimentary geolipid record in an isolated tarn. Chem Geol 112:309–324CrossRefGoogle Scholar
  30. Holtvoeth J, Rushworth D, Imeri A, Cara M, Vogel H, Wagner T, Wolff GA (2016) Improved end–member characterization of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies. Biogeosciences 13:795–816CrossRefGoogle Scholar
  31. Kohler HP, Åhring B, Albella C, Ingvorsen K, Keweloh H, Laczko E, Stupperich E, Tomei F (1984) Bacteriological studies on the sulfur cycle in the anaerobic part of the hypolimnion and in the surface sediments of Rotsee in Switzerland. FEMS Microbiol Lett 21:279–286Google Scholar
  32. Kritzberg ES, Cole JJ, Pace ML, Granéli W, Bade DL (2004) Autochthonous versus allochthonous carbon sources of bacteria: results from whole–lake 13C addition experiments. Limnol Oceanogr 49:588–596CrossRefGoogle Scholar
  33. Matzinger A, Muller B, Niederhauser P, Schmid M, Wuest A (2010) Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnol Oceanogr 55:2073–2084CrossRefGoogle Scholar
  34. Megraw SR, Knowles R (1989) Effect of picolinic acid (2-pyridine carboxylic acid) on the oxidation of methane and ammonia in soil and in liquid culture. Soil Biol Biochem 89:11–20Google Scholar
  35. Meyers P (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  36. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very long-chain fatty acid condensing enzyme. Plant Cell 11:825–838CrossRefGoogle Scholar
  37. Müller A, Mathesius U (1999) The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeogr Palaeoclimatol Palaeoecol 145:1–16CrossRefGoogle Scholar
  38. Naeher S, Smittenberg RH, Gilli A, Kirilova EP, Lotter AF, Schubert CJ (2012) Impact of recent lake eutrophication on microbial community changes as revealed by high resolution lipid biomarkers in Rotsee (Switzerland). Org Geochem 49:86–95CrossRefGoogle Scholar
  39. Nusslein B, Eckert W, Conrad R (2003) Stable isotope biogeochemistry of methane formation in profundal sediments of Lake Kinneret (Israel). Limnol Oceanogr 48:1439–1446CrossRefGoogle Scholar
  40. O’Neill JG, Wilkinson JF (1977) Oxidation of ammonia by methaneoxidizing bacteria and the effect s of ammonia on methane oxidation. J Gen Microbiol 100:407–412CrossRefGoogle Scholar
  41. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Poll A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306CrossRefGoogle Scholar
  42. Richardson JS, Zhang Y, Marczak LB (2010) Resource subsidies across the land–freshwater interface and responses in recipient communities. Riv Res Appl 26:55–66CrossRefGoogle Scholar
  43. Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304CrossRefGoogle Scholar
  44. Routh J, Meyers PA, Gustafsson Ö, Baskaran M, Hallberg R, Schöldström A (2004) Sedimentary geochemical record of human induced environmental changes in the Lake Brunnsviken watershed, Sweden. Limnol Oceanogr 49:1560–1569CrossRefGoogle Scholar
  45. Sanseverino AM, Bastviken D, Sundh I, Pickova J, Enrich-Prast A (2012) Methane carbon supports aquatic food webs to the fish level. PLoS ONE 7:1–8CrossRefGoogle Scholar
  46. Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci 72:455–466CrossRefGoogle Scholar
  47. Stadelmann P (1980) Der Zustand des Rotsees bei Luzern. In: Maihof Quartierverein (ed) Geschichte und Eigenart eines Quartiers. Quartierverein Maihof, Luzern, pp 54–61Google Scholar
  48. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131CrossRefGoogle Scholar
  49. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229CrossRefGoogle Scholar
  50. van Winden JF, Kip N, Reichart GJ, Jetten MSM, Op den Camp HJM, Sinninghe Damsté JS (2010) Lipids of symbiotic methane-oxidizing bacteria in peat moss studied using stable carbon isotopic labelling. Org Geochem 41:1040–1044CrossRefGoogle Scholar
  51. Volkman JK, Johns RB, Gillan FT, Perry GJ, Bavor HJ Jr (1980) Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochim Cosmochim Acta 44:1133–1143CrossRefGoogle Scholar
  52. Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Organic geochemistry microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179CrossRefGoogle Scholar
  53. Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358CrossRefGoogle Scholar
  54. Zepp Falz K, Holliger C, Grosskopf R, Liesack W, Nozhevnikova AN, Müller B, Wehrli B, Hahn D (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl Environ Microbiol 65:2402–2408Google Scholar
  55. Zhang YD, Su YL, Liu ZW, Chen XC, Yu JL, Di XD, Jin M (2016) A sediment record of environmental change in and around Lake Lugu, SW China, during the past two centuries. J Paleolimnol 55:259–271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yaling Su
    • 1
  • Marieke Lammers
    • 2
  • Yongdong Zhang
    • 1
  • Loes van Bree
    • 2
  • Zhengwen Liu
    • 1
  • Gert-Jan Reichart
    • 2
    • 3
  • Jack J. Middelburg
    • 2
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingPeople’s Republic of China
  2. 2.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Royal Netherlands Institute for Sea ResearchTexelThe Netherlands

Personalised recommendations